Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise

Aleksandra Zimmermann Institute of Mathematics, Clausthal University of Technology

with Caroline Bauzet, Flore Nabet and Kerstin Schmitz

September 1st, 2023

The heat equation with multiplicative Lipschitz noise

For T > 0, $\Lambda \subset \mathbb{R}^2$ a bounded polygonal domain we consider

$$du - \Delta u \, dt = g(u) \, dW_t$$
 in $\Omega \times (0, T) \times \Lambda$

(Ω, A, P, (F_t)_{t≥0}, (W_t)_{t≥0}) is a stochastic basis with a real-valued Brownian motion (W_t)_{t≥0}.

• $g: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous

homogeneous Neumann boundary condition

$$\nabla u \cdot \vec{n} = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ 2/24 > □ ○ へ (~

 initial value u(0, ·) = u₀ for a F₀-measurable random variable u₀ ∈ L²(Ω; H¹(Λ)).

A filtration (*F_t*)_{t≥0} is a family of σ-fields (*F_t*)_{t≥0} satisfying *F_t* ⊆ *A* for all *t* ≥ 0 and *F_s* ⊆ *F_t* for all *s* ≤ *t*.

- A filtration (*F_t*)_{t≥0} is a family of σ-fields (*F_t*)_{t≥0} satisfying *F_t* ⊆ *A* for all t ≥ 0 and *F_s* ⊆ *F_t* for all s ≤ t.
- A stochastic process (W_t)_{t≥0} is a Brownian motion with respect to (F_t)_{t≥0} iff
 - $W_0 = 0$
 - For any fixed $t \in [0, T]$, the random variable W_t is \mathcal{F}_t -measurable, i.e., $(\mathcal{F}_t)_{t \geq 0}$ -adapted
 - For for $0 \le s \le t$, $W_t W_s$ is N(0, t s)-distributed and independent of \mathcal{F}_s

- A filtration (*F_t*)_{t≥0} is a family of σ-fields (*F_t*)_{t≥0} satisfying *F_t* ⊆ *A* for all t ≥ 0 and *F_s* ⊆ *F_t* for all s ≤ t.
- A stochastic process (W_t)_{t≥0} is a Brownian motion with respect to (F_t)_{t≥0} iff
 - $W_0 = 0$
 - For any fixed $t \in [0, T]$, the random variable W_t is \mathcal{F}_t -measurable, i.e., $(\mathcal{F}_t)_{t \geq 0}$ -adapted
 - For for 0 ≤ s ≤ t, W_t − W_s is N(0, t − s)-distributed and independent of F_s

Properties of the Itô integral

$$\mathbb{E}\left[\int_{0}^{T}\phi(s)\,dW_{s}\right] = 0$$
$$\mathbb{E}\left[\left\|\int_{0}^{T}\phi(s)\,dW_{s}\right\|^{2}\right] = \mathbb{E}\left[\int_{0}^{T}\|\phi(s)\|^{2}\,ds\right]$$

- A filtration (*F_t*)_{t≥0} is a family of σ-fields (*F_t*)_{t≥0} satisfying *F_t* ⊆ *A* for all t ≥ 0 and *F_s* ⊆ *F_t* for all s ≤ t.
- A stochastic process (W_t)_{t≥0} is a Brownian motion with respect to (F_t)_{t≥0} iff
 - $W_0 = 0$
 - For any fixed $t \in [0, T]$, the random variable W_t is \mathcal{F}_t -measurable, i.e., $(\mathcal{F}_t)_{t \geq 0}$ -adapted
 - For for 0 ≤ s ≤ t, W_t − W_s is N(0, t − s)-distributed and independent of F_s

Properties of the Itô integral

$$\mathbb{E}\left[\int_{0}^{T}\phi(s)\,dW_{s}\right] = 0$$
$$\mathbb{E}\left[\left\|\int_{0}^{T}\phi(s)\,dW_{s}\right\|^{2}\right] = \mathbb{E}\left[\int_{0}^{T}\|\phi(s)\|^{2}\,ds\right]$$

Finite-volume approximation of the variational solution

A variational solution to the heat equation with multiplicative Lipschitz noise is a $(\mathcal{F}_t)_{t\geq 0}$ -adapted stochastic process

 $u \in L^2(\Omega; \mathcal{C}([0, T]; L^2(\Lambda))) \cap L^2(\Omega; L^2(0, T; H^1(\Lambda)))$

such that, for all $t \in [0, T]$, in $L^2(\Lambda)$, \mathbb{P} -a.s. in Ω ,

$$u(t) - u_0 - \int_0^t \Delta u(s) \, ds = \int_0^t g(u(s)) \, dW_s$$

From classical results (see, e.g., [Pardoux 1975], [Krylov, Rozovskii 1981], [Liu, Röckner 2015],...) existence and uniqueness of a variational solution is well-known.

We propose a finite-volume scheme, semi-implicit in time and a Two-Point Flux Approximation (TPFA) in space and show its convergence to the variational solution.

The mesh on Λ

Let \mathcal{T} be an admissible mesh consisting of open, polygonal and convex subsets, i.e., control volumes $K \in \mathcal{T}$



- ▶ To each $K \in \mathcal{T}$ we associate a point $x_K \in K$, called center
- σ = K|L is the interface between two neighbouring control volumes K, L ∈ T, called edge
- For two neighbouring control volumes $K, L \in \mathcal{T}$ with centers x_K, x_L we have the orthogonality condition

$$\overrightarrow{x_k x_L} \perp K | L$$

 $\langle \Box \rangle \langle \neg \neg \rangle \langle \neg \neg \rangle \langle \neg \neg \rangle \rangle = 5/24 \Rightarrow \exists$

For $u \in C^2(\overline{\Lambda})$ with $\nabla u \cdot \vec{n} = 0$, $K \in T$, by the divergence theorem

$$\int_{K} \Delta u \, dx = \oint_{\partial K} \nabla u \cdot \vec{\mathsf{n}}_{K} \, dS$$

・・</l>

For $u \in \mathcal{C}^2(\overline{\Lambda})$ with $\nabla u \cdot \vec{n} = 0$, $K \in \mathcal{T}$ by the divergence theorem

$$\int_{K} \Delta u \, dx = \oint_{\partial K} \nabla u \cdot \vec{\mathsf{n}}_{K} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} \oint_{\sigma} \nabla u \cdot \vec{\mathsf{n}}_{K|L} \, dS$$

•
$$\mathcal{E}_K$$
:= set of edges of K for $K \in \mathcal{T}$

• on $\sigma \in \mathcal{E}_{int}$, $\vec{n}_{K} = \vec{n}_{K|L}$ pointing towards a neighbouring control volume $L \in \mathcal{T}$

< □ > < □ > < □ > < □ 6/24 > E のへで

For $u \in C^2(\overline{\Lambda})$ with $\nabla u \cdot \vec{n} = 0$, $K \in \mathcal{T}$ by the divergence theorem and the orthogonality condition on \mathcal{T}

$$\int_{\mathcal{K}} \Delta u \, dx = \oint_{\partial \mathcal{K}} \nabla u \cdot \vec{\mathsf{n}}_{\mathcal{K}} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{\mathcal{K}}} \oint_{\sigma} \nabla u \cdot \vec{\mathsf{n}}_{\mathcal{K}|L} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{\mathcal{K}}} \oint_{\sigma} \nabla u \cdot \frac{(x_L - x_{\mathcal{K}})}{d_{\mathcal{K}|L}} \, dS$$

<□ ▶ < □ ▶ < Ξ 6/24 ● ■ のへで

For $u \in C^2(\overline{\Lambda})$ with $\nabla u \cdot \vec{n} = 0$, $K \in T$ by the divergence theorem, the orthogonality condition on T and Taylor expansion

$$\int_{K} \Delta u \, dx = \oint_{\partial K} \nabla u \cdot \vec{n}_{K} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} \oint_{\sigma} \nabla u \cdot \vec{n}_{K|L} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} \oint_{\sigma} \nabla u \cdot \frac{(x_{L} - x_{K})}{d_{K|L}} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} (u_{L} - u_{K}) \frac{m_{\sigma}}{d_{K|L}} + o(\text{size}(\mathcal{T}))$$

For $u \in C^2(\overline{\Lambda})$, with $\nabla u \cdot \vec{n} = 0$ and $K \in \mathcal{T}$ by the divergence theorem, the orthogonality condition on \mathcal{T} and Taylor expansion

$$\int_{\mathcal{K}} \Delta u \, dx = \oint_{\partial \mathcal{K}} \nabla u \cdot \vec{n}_{\mathcal{K}} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{\mathcal{K}}} \oint_{\sigma} \nabla u \cdot \vec{n}_{\mathcal{K}|L} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{\mathcal{K}}} \oint_{\sigma} \nabla u \cdot \frac{(x_L - x_{\mathcal{K}})}{d_{\mathcal{K}|L}} \, dS$$
$$= \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{\mathcal{K}}} (u_L - u_{\mathcal{K}}) \frac{m_{\sigma}}{d_{\mathcal{K}|L}} + o(\text{size}(\mathcal{T}))$$

two point flux approximation for Δu

◆□ → < □ → < ≥ 6/24 = → ≥ の < @</p>

The finite-volume scheme

Proposition [Bauzet, Nabet, Schmitz, Z., '22]

For h > 0, let \mathcal{T}_h be an admissible mesh with size $(\mathcal{T}_h) = h$ and $m_K := |K|$ for $K \in \mathcal{T}_h$. For $N \in \mathbb{N}$, let $\triangle t := \frac{T}{N}$ and $t_n := n \triangle t$ for $n = 0, \dots, N$.

For any given \mathcal{F}_{t_n} -measurable random vector $(u_K^n)_{K \in \mathcal{T}_h}$, there exists a $\mathcal{F}_{t_{n+1}}$ -measurable random vector $(u_K^{n+1})_{K \in \mathcal{T}_h}$ satisfying

$$m_{\mathcal{K}}(u_{\mathcal{K}}^{n+1} - u_{\mathcal{K}}^{n}) + \triangle t \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{\mathcal{K}}} \frac{m_{\sigma}}{d_{\mathcal{K}|L}} (u_{\mathcal{K}}^{n+1} - u_{L}^{n+1})$$

$$= m_{\mathcal{K}}g(u_{\mathcal{K}}^{n})(W_{t_{n+1}} - W_{t_{n}})$$
(FV)

for all $K \in \mathcal{T}_h$, \mathbb{P} -a.s. in Ω .

<□ ▶ < □ ▶ < Ξ ₩7/24 ▶ Ξ ∽ 9 < ℃

Main result

For h > 0, let \mathcal{T}_h be an admissible mesh with size $(\mathcal{T}_h) = h$. For $N \in \mathbb{N}$, let $\triangle t := \frac{T}{N}$ and $t_n := n \triangle t$ for n = 0, ..., N. For any $K \in \mathcal{T}_h$ let

$$u_K^0:=\frac{1}{m_K}\int_K u_0(x)\,dx.$$

For $n \in \{0, ..., N-1\}$, let $(u_K^{n+1})_{K \in \mathcal{T}_h}$ be the solution of (FV) obtained by iteration starting with the random vector $(u_K^0)_{K \in \mathcal{T}_h}$.

Then, the step functions

$$u_{h,N}^r(t,x) \coloneqq u_{\mathcal{K}}^{n+1}, \; t \in [t_n,t_{n+1}), \; x \in \mathcal{K} \; ig({ extsf{not}} \; extsf{adapted} ig)$$

 $u_{h,N}^{\prime}(t,x) := u_{K}^{n}, t \in [t_{n}, t_{n+1}), x \in K$ (adapted)

converge in $L^{p}(\Omega, L^{2}(0, T; L^{2}(\Lambda)))$ for all $1 \leq p < 2$ towards the unique variational solution of the heat equation with multiplicative Lipschitz noise.

$$m_{\mathcal{K}}(u_{\mathcal{K}}^{n+1}-u_{\mathcal{K}}^{n})+\bigtriangleup t\sum_{\sigma\in\mathcal{E}_{int}\cap\mathcal{E}_{\mathcal{K}}}\frac{m_{\sigma}}{d_{\mathcal{K}|L}}(u_{\mathcal{K}}^{n+1}-u_{L}^{n+1})$$
$$=m_{\mathcal{K}}g(u_{\mathcal{K}}^{n})(W_{t_{n+1}}-W_{t_{n}})$$

$$\sum_{K\in\mathcal{T}_h} m_K (u_K^{n+1} - u_K^n) u_K^{n+1} + \triangle t \sum_{K\in\mathcal{T}_h} \sum_{\sigma\in\mathcal{E}_{int}\cap\mathcal{E}_K} \frac{m_\sigma}{d_{K|L}} (u_K^{n+1} - u_L^{n+1}) u_K^{n+1}$$
$$= \sum_{K\in\mathcal{T}_h} m_K g(u_K^n) (W_{t_{n+1}} - W_{t_n}) u_K^{n+1}$$

$$= \sum_{\sigma \in \mathcal{E}_{int}} \frac{m_{\sigma}}{d_{K|L}} |u_{K}^{n+1} - u_{L}^{n+1}|^{2}$$

$$\sum_{K \in \mathcal{T}_{h}} m_{K} (u_{K}^{n+1} - u_{K}^{n}) u_{K}^{n+1} + \Delta t \underbrace{\sum_{K \in \mathcal{T}_{h}} \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} \frac{m_{\sigma}}{d_{K|L}} (u_{K}^{n+1} - u_{L}^{n+1}) u_{K}^{n+1}}_{= \sum_{K \in \mathcal{T}_{h}} m_{K} g(u_{K}^{n}) (W_{t_{n+1}} - W_{t_{n}}) u_{K}^{n+1}}$$

$$\sum_{K \in \mathcal{T}_h} \frac{m_K}{2} \mathbb{E} \left[|u_K^{n+1}|^2 - |u_K^n|^2 + |u_K^{n+1} - u_K^n|^2 \right]$$
$$+ \Delta t \mathbb{E} \left[\sum_{\sigma \in \mathcal{E}_{int}} \frac{m_\sigma}{d_{K|L}} |u_K^{n+1} - u_L^{n+1}|^2 \right]$$
$$= \sum_{K \in \mathcal{T}_h} m_K \mathbb{E} \left[g(u_K^n) (W_{t_{n+1}} - W_{t_n}) u_K^{n+1} \right]$$

$$\begin{split} &\sum_{K\in\mathcal{T}_h} \frac{m_K}{2} \mathbb{E}\left[|u_K^{n+1}|^2 - |u_K^n|^2 + |u_K^{n+1} - u_K^n|^2\right] \\ &+ \triangle t \mathbb{E}\left[\sum_{\sigma\in\mathcal{E}_{int}} \frac{m_\sigma}{d_{K|L}} |u_K^{n+1} - u_L^{n+1}|^2\right] \\ &= \sum_{K\in\mathcal{T}_h} m_K \mathbb{E}\left[g(u_K^n)(W_{t_{n+1}} - W_{t_n})(u_K^{n+1} - u_K^n)\right] \end{split}$$

<□> <∄> < ∃ 9/24 > ∃ ∽ < <

$$\sum_{K \in \mathcal{T}_h} \frac{m_K}{2} \mathbb{E} \left[|u_K^{n+1}|^2 - |u_K^n|^2 + |u_K^{n+1} - u_K^n|^2 \right] \\ + \Delta t \mathbb{E} \left[\sum_{\sigma \in \mathcal{E}_{int}} \frac{m_\sigma}{d_{K|L}} |u_K^{n+1} - u_L^{n+1}|^2 \right] \\ \leq \sum_{K \in \mathcal{T}_h} \frac{m_K}{2} \left(\Delta t \mathbb{E} \left[|g(u_K^n)|^2 \right] + \mathbb{E} \left[|u_K^{n+1} - u_K^n|^2 \right] \right)$$

<□> <∄> < ≥ 9/24 > ≥ √ < <

$$\begin{split} &\sum_{K\in\mathcal{T}_h} \frac{m_K}{2} \mathbb{E}\left[|u_K^{n+1}|^2 - |u_K^n|^2\right] + \mathbb{E}\left[\int_{t_n}^{t_{n+1}} \sum_{\sigma\in\mathcal{E}_{\text{int}}} \frac{m_\sigma}{d_{K|L}} |u_K^{n+1} - u_L^{n+1}|^2 dt\right] \\ &\leq \sum_{K\in\mathcal{T}_h} \frac{m_K}{2} \mathbb{E}\left[\int_{t_n}^{t_{n+1}} |g(u_K^n)|^2 dt\right] \end{split}$$

▲□ → ▲圖 → ▲ ≣ 9/24 → ≡ ∽ ۹ ↔

for all $n \in \{0, \ldots, N-1\}$.

Consequences of the fundamental inequality

Using the Lipschitz continuity of $g:\mathbb{R}\to\mathbb{R}$ and a discrete Gronwall inequality, it follows that

▶ the sequences of step functions $(u_{h,N}^{l})_{h,N}$ and $(u_{h,N}^{r})_{h,N}$

the norm of the discrete gradient, i.e.,

$$\|\nabla^{h} u_{h,N}^{r}\|^{2} = 2\mathbb{E}\left[\sum_{n=0}^{N-1} \int_{t_{n}}^{t_{n+1}} \sum_{\sigma \in \mathcal{E}_{\text{int}}} \frac{m_{\sigma}}{d_{K|L}} |u_{K}^{n+1} - u_{L}^{n+1}|^{2} dt\right]$$

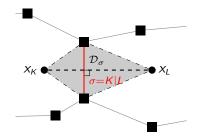
are bounded in $L^2(\Omega; L^2(0, T; L^2(\Lambda)))$ by constants not depending on the discretization parameters $N \in \mathbb{N}$ and h > 0.

The discrete gradient

For $t \in [t_n, t_{n+1})$, $n \in \{0, ..., N-1\}$ we associate to the step function $u_{h,N}^r$ given by (FV) a discrete gradient

$$\nabla^{h} u_{h,N}^{r}(t,x) = \begin{cases} 2 \frac{u_{L}^{n+1} - u_{K}^{n+1}}{d_{K|L}} \mathsf{n}_{KL}, & \text{if } x \in \mathcal{D}_{\sigma}, \, \sigma = K | L \in \mathcal{E}_{\mathsf{int}}; \\ 0, & \text{else }. \end{cases}$$

which is piecewise constant on the diamond cells $(\mathcal{D}_{\sigma})_{\sigma \in \mathcal{E}_{int}}$.



 $\langle \Box \rangle \langle \neg \neg \rangle \langle \neg \neg \rangle \rangle \langle \neg \neg 11/24 \rangle$

Weak convergence and improved regularity

There exists a function $u \in L^2(\Omega; L^2(0, T; L^2(\Lambda)))$ such that, passing to a subsequence if necessary,

$$u_{h,N}^{l}$$
 and $u_{h,N}^{r}
ightarrow u$

weakly in $L^2(\Omega; L^2(0, T; L^2(\Lambda)))$ for $N \to +\infty, h \to 0$.

Proposition [Eymard, Gallouët '03] $u \in L^2(\Omega; L^2(0, T; H^1(\Lambda)))$ and

$$\nabla^h u_{h,N}^r \rightharpoonup \nabla u$$

weakly in $L^2(\Omega; L^2(0, T; L^2(\Lambda)^2)))$ for $N \to +\infty, h \to 0$

< □ > < □ > < 目12/24 > 目 のへで

Weak convergence and improved regularity

There exists a function $u \in L^2(\Omega; L^2(0, T; L^2(\Lambda)))$ such that, passing to a subsequence if necessary,

$$u_{h,N}^{l}$$
 and $u_{h,N}^{r}
ightarrow u$

weakly in $L^2(\Omega; L^2(0, T; L^2(\Lambda)))$ for $N \to +\infty$, $h \to 0$.

Proposition [Eymard, Gallouët '03] $u \in L^2(\Omega; L^2(0, T; H^1(\Lambda)))$ and

$$\nabla^h u_{h,N}^r \rightharpoonup \nabla u$$

weakly in $L^2(\Omega; L^2(0, T; L^2(\Lambda)^2)))$ for $N \to +\infty, h \to 0$...but weak convergence is not compatible with the nonlinear

diffusion term $g : \mathbb{R} \to \mathbb{R}$

Lemma [Bauzet, Nabet, Schmitz, Z. '22] For any $\alpha \in (0, \frac{1}{2})$, $(u'_{h,N})_{h,N}$ is bounded in the space

$$L^2(\Omega; L^2(0, T; W^{\alpha,2}(\Lambda))) \cap L^2(\Omega; W^{\alpha,2}(0, T; L^2(\Lambda))).$$

Idea of proof: Uniform estimates on the time and space translates of approximate solutions associated with (FV) are useful to find bounds on the Gagliardo seminorms for $(u_{h,N}^{l})_{h,N}$.

□ > < □ > < □ 13/24 > □

Lemma [Bauzet, Nabet, Schmitz, Z. '22] For any $\alpha \in (0, \frac{1}{2})$, $(u'_{h,N})_{h,N}$ is bounded in the space

$$L^2(\Omega; L^2(0, T; W^{\alpha,2}(\Lambda))) \cap L^2(\Omega; W^{\alpha,2}(0, T; L^2(\Lambda))).$$

Idea of proof: Uniform estimates on the time and space translates of approximate solutions associated with (FV) are useful to find bounds on the Gagliardo seminorms for $(u_{h,N}^l)_{h,N}$.

$$L^{2}(0, T; W^{\alpha,2}(\Lambda)) \cap W^{\alpha,2}(0, T; L^{2}(\Lambda)) \stackrel{\text{compact}}{\hookrightarrow} L^{2}(0, T; L^{2}(\Lambda))$$

□ > < □ > < □ 13/24 > □

Lemma [Bauzet, Nabet, Schmitz, Z. '22] For any $\alpha \in (0, \frac{1}{2})$, $(u'_{h,N})_{h,N}$ is bounded in the space

$$L^2(\Omega; L^2(0, T; W^{\alpha,2}(\Lambda))) \cap L^2(\Omega; W^{\alpha,2}(0, T; L^2(\Lambda))).$$

Idea of proof: Uniform estimates on the time and space translates of approximate solutions associated with (FV) are useful to find bounds on the Gagliardo seminorms for $(u_{h,N}^l)_{h,N}$.

$$L^{2}(0, T; W^{\alpha,2}(\Lambda)) \cap W^{\alpha,2}(0, T; L^{2}(\Lambda)) \stackrel{\text{compact}}{\hookrightarrow} L^{2}(0, T; L^{2}(\Lambda))$$

 $\stackrel{\text{Lemma}}{\Longrightarrow} \text{ The sequence of laws } \mathcal{L}(u_{h,N}^{\prime})_{h,N} \text{ on } L^{2}(0,T;L^{2}(\Lambda)) \text{ is tight.}$

Lemma [Bauzet, Nabet, Schmitz, Z. '22] For any $\alpha \in (0, \frac{1}{2})$, $(u'_{h,N})_{h,N}$ is bounded in the space

$$L^2(\Omega; L^2(0, T; W^{\alpha,2}(\Lambda))) \cap L^2(\Omega; W^{\alpha,2}(0, T; L^2(\Lambda))).$$

Idea of proof: Uniform estimates on the time and space translates of approximate solutions associated with (FV) are useful to find bounds on the Gagliardo seminorms for $(u_{h,N}^l)_{h,N}$.

$$L^2(0, T; W^{\alpha,2}(\Lambda)) \cap W^{\alpha,2}(0, T; L^2(\Lambda)) \stackrel{\text{compact}}{\hookrightarrow} L^2(0, T; L^2(\Lambda))$$

Lemma The sequence of laws $\mathcal{L}(u_{h,N}^l)_{h,N}$ on $L^2(0, T; L^2(\Lambda))$ is tight. Prokhorov Up to a subsequence, $(u_{h,N}^l)_{h,N}$ converges in law to a probability measure μ_{∞} .

Theorem of Skorokhod

On a new probability space $(\Omega', \mathcal{A}', \mathbb{P}')$

▶ there exist random variables v_0 , $(v'_{h,N})_{h,N}$, u_∞ with

$$\mathcal{L}(v_0) = \mathcal{L}(u_0), \ \mathcal{L}(v_{h,N}^l) = \mathcal{L}(u_{h,N}^l) ext{ for all } h > 0, \ N \in \mathbb{N},$$

 $\mathcal{L}(u_{\infty}) = \mu_{\infty}$

and

$$v_{h,N}^{\prime} \xrightarrow{h,N} u_{\infty}$$
 in $L^{2}(0,T;L^{2}(\Lambda)) \mathbb{P}^{\prime}$ -a.s. in Ω^{\prime} ,

► there exists a stochastic process W[∞] and a sequence of Brownian motions (W^{h,N})_{h,N} such that

$$W^{h,N} \xrightarrow{h,N} W^{\infty}$$
 in $\mathcal{C}([0,T]) \mathbb{P}'$ -a.s. in Ω'

▲□▶ ▲□▶ ▲ ≡14/24 ► ≡ •9 < </p>

Consequences of Skorokhod's Theorem

▶
$$v_{h,N}^{l}$$
 is a step function, i.e., for any $K \in \mathcal{T}_{h}$,
 $n \in \{0, ..., N-1\}$, $v_{h,N}^{l}(t, x) := v_{K}^{n}$ for all $t \in [t_{n}, t_{n+1})$,
 $x \in K$.

For any n ∈ {0,..., N − 1}, the random vector (v_Kⁿ⁺¹)_{K∈T_h} is a solution of

$$m_{\mathcal{K}}(v_{\mathcal{K}}^{n+1}-v_{\mathcal{K}}^{n})+\bigtriangleup t\sum_{\sigma\in\mathcal{E}_{int}\cap\mathcal{E}_{\mathcal{K}}}\frac{m_{\sigma}}{d_{\mathcal{K}|L}}(v_{\mathcal{K}}^{n+1}-v_{L}^{n+1})$$

= $m_{\mathcal{K}}g(v_{\mathcal{K}}^{n})(W_{t_{n+1}}^{h,N}-W_{t_{n}}^{h,N})$ (FV')

for all $K \in \mathcal{T}_h$.

Identification of the stochastic integral

▶ For any, h > 0, $N \in \mathbb{N}$ there exists a filtration $(\mathfrak{F}_t^{h,N})_{t\geq 0}$ such that $v_{h,N}^l$ is adapted to $(\mathfrak{F}_t^{h,N})_{t\geq 0}$ and $W^{h,N} = (W_t^{h,N})_{t\geq 0}$ is a Brownian motion with respect to $(\mathfrak{F}_t^{h,N})_{t\geq 0}$.

$$\begin{split} m_{\mathcal{K}}(v_{\mathcal{K}}^{n+1}-v_{\mathcal{K}}^{n}) + & \bigtriangleup t \sum_{\sigma \in \mathcal{E}_{\text{int}} \cap \mathcal{E}_{\mathcal{K}}} \frac{m_{\sigma}}{d_{\mathcal{K}|L}} (v_{\mathcal{K}}^{n+1}-v_{L}^{n+1}) \\ &= m_{\mathcal{K}}g(v_{\mathcal{K}}^{n}) (W_{t_{n+1}}^{h,N}-W_{t_{n}}^{h,N}) \end{split}$$

for all $K \in \mathcal{T}_h$.

Identification of the stochastic integral

▶ For any, h > 0, $N \in \mathbb{N}$ there exists a filtration $(\mathfrak{F}_t^{h,N})_{t\geq 0}$ such that $v_{h,N}^l$ is adapted to $(\mathfrak{F}_t^{h,N})_{t\geq 0}$ and $W^{h,N} = (W_t^{h,N})_{t\geq 0}$ is a Brownian motion with respect to $(\mathfrak{F}_t^{h,N})_{t\geq 0}$.

$$m_{\mathcal{K}}(v_{\mathcal{K}}^{n+1}-v_{\mathcal{K}}^{n})+\triangle t\sum_{\sigma\in\mathcal{E}_{int}\cap\mathcal{E}_{\mathcal{K}}}\frac{m_{\sigma}}{d_{\mathcal{K}|L}}(v_{\mathcal{K}}^{n+1}-v_{L}^{n+1})$$
$$=\int_{\mathcal{K}}\int_{t_{n}}^{t_{n+1}}g(v_{h,N}^{l})\,dW_{t}^{h,N}\,dx$$

 $\langle \Box \rangle \langle \neg \neg \rangle \langle \neg \neg \rangle \rangle \langle \neg \neg 16/24 \rangle \equiv 16/24 \rangle$

for all $K \in \mathcal{T}_h$.

Identification of the stochastic integral

- ▶ For any, h > 0, $N \in \mathbb{N}$ there exists a filtration $(\mathfrak{F}_t^{h,N})_{t\geq 0}$ such that $v_{h,N}^{l}$ is adapted to $(\mathfrak{F}_t^{h,N})_{t\geq 0}$ and $W^{h,N} = (W_t^{h,N})_{t\geq 0}$ is a Brownian motion with respect to $(\mathfrak{F}_t^{h,N})_{t\geq 0}$.
- There exists a filtration (𝔅[∞]_t)_{t≥0} such that u_∞ has a predictable dℙ' ⊗ dt-representative and W[∞] = (W[∞]_t)_{t≥0} is a Brownian motion with respect to (𝔅[∞]_t)_{t≥0}.
- ▶ By a result of [Debussche, Glatt-Holtz, Temam 2011],

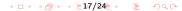
$$\int_{\Lambda} \int_{0}^{T} g(v_{h,N}') \, dW_{t}^{h,N} \, dx \xrightarrow{h,N} \int_{\Lambda} \int_{0}^{T} g(u_{\infty}) \, dW_{t}^{\infty} \, dx$$

 \mathbb{P}' -a.s. in Ω' .

Strong convergence of finite-volume approximations

Proposition [Bauzet, Nabet, Schmitz, Z., '22]

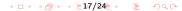
 $(\Omega', \mathbb{P}', \mathcal{A}', (\mathfrak{F}_t^{\infty})_{t \geq 0}, W^{\infty}, u_{\infty}, v_0)$ is a martingale solution for the heat equation with multiplicative Lipschitz noise.



Proposition [Bauzet, Nabet, Schmitz, Z., '22]

 $(\Omega', \mathbb{P}', \mathcal{A}', (\mathfrak{F}_t^{\infty})_{t \ge 0}, W^{\infty}, u_{\infty}, v_0)$ is a martingale solution for the heat equation with multiplicative Lipschitz noise.

Solutions are pathwise unique.



Proposition [Bauzet, Nabet, Schmitz, Z., '22]

 $(\Omega', \mathbb{P}', \mathcal{A}', (\mathfrak{F}_t^{\infty})_{t \geq 0}, W^{\infty}, u_{\infty}, v_0)$ is a martingale solution for the heat equation with multiplicative Lipschitz noise.

- Solutions are pathwise unique.
- We may construct two martingale solutions with respect to the same stochastic basis and with the same initial value.

Proposition [Bauzet, Nabet, Schmitz, Z., '22]

 $(\Omega', \mathbb{P}', \mathcal{A}', (\mathfrak{F}_t^{\infty})_{t \geq 0}, W^{\infty}, u_{\infty}, v_0)$ is a martingale solution for the heat equation with multiplicative Lipschitz noise.

- Solutions are pathwise unique.
- We may construct two martingale solutions with respect to the same stochastic basis and with the same initial value.

According to [Gyöngy, Krylov 1996]: up to a not relabeled subsequence, (u^l_{h,N})_{h,N} and (u^r_{h,N})_{h,N} converge ℙ-a.s. in L²(0, T; L²(Λ))

Proposition [Bauzet, Nabet, Schmitz, Z., '22]

 $(\Omega', \mathbb{P}', \mathcal{A}', (\mathfrak{F}_t^{\infty})_{t \geq 0}, W^{\infty}, u_{\infty}, v_0)$ is a martingale solution for the heat equation with multiplicative Lipschitz noise.

- Solutions are pathwise unique.
- We may construct two martingale solutions with respect to the same stochastic basis and with the same initial value.
- ► According to [Gyöngy, Krylov 1996]: up to a not relabeled subsequence, (u^r_{h,N})_{h,N} and (u^r_{h,N})_{h,N} converge P-a.s. in L²(0, T; L²(Λ))
- Thanks to the uniform bounds in L²(Ω; L²(0, T; L²(Λ))), by Vitali's theorem the convergence also holds in L^p(Ω; L²(0, T; L²(Λ))) for 1 ≤ p < 2.</p>

< □ > < □ > < □ > < □ 17/24 > ■ のへで

Proposition [Bauzet, Nabet, Schmitz, Z., '22]

 $(\Omega', \mathbb{P}', \mathcal{A}', (\mathfrak{F}_t^{\infty})_{t \geq 0}, W^{\infty}, u_{\infty}, v_0)$ is a martingale solution for the heat equation with multiplicative Lipschitz noise.

- Solutions are pathwise unique.
- We may construct two martingale solutions with respect to the same stochastic basis and with the same initial value.
- According to [Gyöngy, Krylov 1996]: up to a not relabeled subsequence, (u^l_{h,N})_{h,N} and (u^r_{h,N})_{h,N} converge ℙ-a.s. in L²(0, T; L²(Λ))
- Thanks to the uniform bounds in L²(Ω; L²(0, T; L²(Λ))), by Vitali's theorem the convergence also holds in L^p(Ω; L²(0, T; L²(Λ))) for 1 ≤ p < 2.</p>
- The joint limit u is the unique variational solution of the heat equation with multiplicative Lipschitz noise.

The stochastic heat equation with convection

$$du - \Delta u \, dt + \operatorname{div}(\mathbf{v}u) \, dt = g(u) \, dW_t + \beta(u) \, dt \quad \text{in } \Omega \times (0, T) \times \Lambda$$
$$u(0, \cdot) = u_0 \qquad \qquad \text{in } \Omega \times \Lambda$$
$$\nabla u \cdot \mathbf{n} = 0 \qquad \qquad \text{on } \partial\Lambda$$

- ▶ $\mathbf{v} \in C^1([0, T] \times \overline{\Lambda}; \mathbb{R}^2)$
- $\operatorname{div}(\mathbf{v}) = 0$ in $[0, T] \times \Lambda$
- $\blacktriangleright \mathbf{v} \cdot \vec{n} = 0 \text{ on } [0, T] \times \partial \Lambda$
- $\beta : \mathbb{R} \to \mathbb{R}$ Lipschitz continuous with $\beta(0) = 0$

Upwind scheme for the convection term

For
$$u \in C^1(\overline{\Lambda}; \mathbb{R}), \mathbf{v} \in C^1(\overline{\Lambda}; \mathbb{R}^2)$$
 with $\mathbf{v} \cdot \vec{n} = 0$ on $\partial \Lambda$ and $K \in \mathcal{T}$
$$\int_K \operatorname{div}(\mathbf{v}(x)u(x)) \, dx = \int_{\partial K} \mathbf{v}(x) \cdot \vec{n}_K(x)u(x) \, d\gamma(x)$$
$$= \sum_{\sigma \in \mathcal{E}_{\operatorname{int}} \cap \mathcal{E}_K} \int_{\sigma} \mathbf{v}(x) \cdot \vec{n}_{K|L}u(x) \, d\gamma(x)$$

<**□ > < //>**

Upwind scheme for the convection term

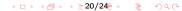
For
$$u \in C^{1}(\overline{\Lambda}; \mathbb{R}), \mathbf{v} \in C^{1}(\overline{\Lambda}; \mathbb{R}^{2})$$
 with $\mathbf{v} \cdot \vec{n} = 0$ on $\partial \Lambda$ and $K \in \mathcal{T}$
$$\int_{K} \operatorname{div}(\mathbf{v}(x)u(x)) \, dx = \int_{\partial K} \mathbf{v}(x) \cdot \vec{n}_{K}(x)u(x) \, d\gamma(x)$$
$$= \sum_{\sigma \in \mathcal{E}_{\operatorname{int}} \cap \mathcal{E}_{K}} \int_{\sigma} \mathbf{v}(x) \cdot \vec{n}_{K|L}u(x) \, d\gamma(x)$$
$$\approx \sum_{\sigma \in \mathcal{E}_{\operatorname{int}} \cap \mathcal{E}_{K}} m_{\sigma} \mathbf{v}_{K,\sigma} u_{\sigma}.$$

Where, u_{σ} is interpreted as the quantity of *u* transported through the interface $\sigma = K | L$ by the velocity $v_{K,\sigma}$:

$$\mathbf{v}_{\mathbf{K},\sigma} := \frac{1}{m_{\sigma}} \int_{\sigma} \mathbf{v}(x) \cdot \vec{n}_{\mathbf{K}|L} \, d\gamma(x), \quad \mathbf{u}_{\sigma} := \begin{cases} u_{\mathbf{K}}, & \text{if } \mathbf{v}_{\mathbf{K},\sigma} \geq 0\\ u_{L}, & \text{if } \mathbf{v}_{\mathbf{K},\sigma} < 0. \end{cases}$$

If div $(\mathbf{v}) = 0$ in Λ , for $K \in \mathcal{T}$ we have

$$\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}u_{\sigma}=\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}(u_{\sigma}-u_{K}).$$



If $div(\mathbf{v}) = 0$ in Λ , for $K \in \mathcal{T}$ we have

$$\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}u_{\sigma}=\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}(u_{\sigma}-u_{K}).$$

since, for any $K \in \mathcal{T}$,

$$\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{\rm K}}m_{\sigma}v_{{\rm K},\sigma}u_{\rm K}=\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{\rm K}}u_{\rm K}\int_{\sigma}\mathbf{v}(x)\cdot\vec{n}_{{\rm K}|L}\,d\gamma(x)$$

If $div(\mathbf{v}) = 0$ in Λ , for $K \in \mathcal{T}$ we have

$$\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}u_{\sigma}=\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}(u_{\sigma}-u_{K}).$$

since, for any $K \in \mathcal{T}$,

$$\sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} m_{\sigma} \mathbf{v}_{K,\sigma} u_{K} = \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} u_{K} \int_{\sigma} \mathbf{v}(x) \cdot \vec{n}_{K|L} d\gamma(x)$$
$$= u_{K} \int_{\partial K} \mathbf{v}(x) \cdot \vec{n}_{K}(x) d\gamma(x)$$

If $div(\mathbf{v}) = 0$ in Λ , for $K \in \mathcal{T}$ we have

$$\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}u_{\sigma}=\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}(u_{\sigma}-u_{K}).$$

since, for any $K \in \mathcal{T}$,

$$\sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_K} m_{\sigma} v_{K,\sigma} u_K = \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_K} u_K \int_{\sigma} \mathbf{v}(x) \cdot \vec{n}_{K|L} \, d\gamma(x)$$
$$= u_K \int_{\partial K} \mathbf{v}(x) \cdot \vec{n}_K(x) \, d\gamma(x)$$
$$= u_K \int_K \operatorname{div}(\mathbf{v}(x)) \, dx = 0.$$

< □ > < □ > < ∃20/24 > ∃ ∽ < ℃

If $div(\mathbf{v}) = 0$ in Λ , for $K \in \mathcal{T}$ we have

$$\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}u_{\sigma}=\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{K}}m_{\sigma}v_{K,\sigma}(u_{\sigma}-u_{K}).$$

since, for any $K \in \mathcal{T}$,

$$\sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} m_{\sigma} \mathbf{v}_{K,\sigma} u_{K} = \sum_{\sigma \in \mathcal{E}_{int} \cap \mathcal{E}_{K}} u_{K} \int_{\sigma} \mathbf{v}(x) \cdot \vec{n}_{K|L} \, d\gamma(x)$$
$$= u_{K} \int_{\partial K} \mathbf{v}(x) \cdot \vec{n}_{K}(x) \, d\gamma(x)$$
$$= u_{K} \int_{K} \operatorname{div}(\mathbf{v}(x)) \, dx = 0.$$

Moreover, since $v_{K,\sigma} = (v_{K,\sigma})^+ - (v_{K,\sigma})^-$, we have

$$\sum_{\sigma\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{\rm K}}m_{\sigma}v_{{\rm K},\sigma}(u_{\sigma}-u_{\rm K})=\sum_{\sigma={\rm K}|L\in\mathcal{E}_{\rm int}\cap\mathcal{E}_{\rm K}}m_{\sigma}(v_{{\rm K},\sigma})^{-}(u_{\rm K}-u_{\rm L}).$$

Semi-implicit finite-volume scheme

Proposition [Bauzet, Nabet, Schmitz, Z., '23]

For any given \mathcal{F}_{t_n} -measurable random vector $(u_K^n)_{K \in \mathcal{T}}$ there exists a unique $\mathcal{F}_{t_{n+1}}$ -measurable random vector $(u_K^{n+1})_{K \in \mathcal{T}}$ satisfying

$$\frac{m_{\kappa}}{\Delta t}(u_{\kappa}^{n+1}-u_{\kappa}^{n}) + \sum_{\sigma\in\mathcal{E}_{int}\cap\mathcal{E}_{\kappa}} m_{\sigma}(v_{\kappa,\sigma}^{n+1})^{-}(u_{\kappa}^{n+1}-u_{L}^{n+1}) + \sum_{\sigma\in\mathcal{E}_{int}\cap\mathcal{E}_{\kappa}} \frac{m_{\sigma}}{d_{\kappa|L}}(u_{\kappa}^{n+1}-u_{L}^{n+1}) \\
= \frac{m_{\kappa}}{\Delta t}g(u_{\kappa}^{n})(W(t_{n+1})-W(t_{n})) + m_{\kappa}\beta(u_{\kappa}^{n+1}),$$

for all $K \in \mathcal{T}$, \mathbb{P} -a.s. in Ω , where, for $\sigma = K|L$

$$\mathsf{v}_{K,\sigma}^{n+1} := \frac{1}{m_{\sigma} \Delta t} \int_{t_n}^{t_{n+1}} \int_{\sigma} \mathsf{v}(t,x) \cdot \mathsf{n}_{KL} \, d\gamma(x) \, dt.$$

Convergence result

Theorem [Bauzet, Schmitz, Z., '23]

The finite-volume approximations $u_{h,N}^{l}$ and $u_{h,N}^{r}$ converge strongly in $L^{2}(\Omega; L^{2}(0, T; L^{2}(\Lambda)))$ to the unique solution of the stochastic heat equation with convection, i.e., to a predictable stochastic process $u \in L^{2}(\Omega; C([0, T]; L^{2}(\Lambda))) \cap L^{2}(\Omega; L^{2}(0, T; H^{1}(\Lambda)))$ such that

$$u(t) - u_0 - \int_0^t \Delta u(s) \, ds + \int_0^t \operatorname{div}(\mathbf{v}(s, \cdot)u(s)) \, ds$$
$$= \int_0^t g(u(s)) \, dW_s + \int_0^t \beta(u(s)) \, ds.$$

for all $t \in [0, T]$, in $L^2(\Lambda)$, \mathbb{P} -a.s. in Ω .

Proof of the convergence result

- Weak convergences of $g(u_{h,N}^l)$, $\beta(u_{h,N}^r)$ towards g_u and β_u , respectively
- ► Identification of the weak limits g_u = g(u), β_u = β(u) via stochastic energy inequalities using an exponential weighted in time norm
- The key ingredient is

Lemma [Bauzet, Zimmermann, S. '23]

For any c > 0, the stochastic process u satisfies

$$\int_0^T \int_0^t e^{-cs} \mathbb{E}\left[\int_{\Lambda} |\nabla u(s, x)|^2 dx\right] ds dt$$

$$\leq \liminf_{h \to 0, N \to \infty} \int_0^T \int_0^t e^{-cs} \mathbb{E}\left[|u_{h,N}^r(s)|_{1,h}^2\right] ds dt.$$

where $|\cdot|_{1,h}$ is the discrete H^1 -seminorm.

Thank you for your attention.

