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The heat equation with multiplicative Lipschitz noise

For T > 0, Λ ⊂ R2 a bounded polygonal domain we consider

du −∆u dt = g(u) dWt in Ω× (0,T )× Λ

▶ (Ω,A,P, (Ft)t≥0, (Wt)t≥0) is a stochastic basis with a
real-valued Brownian motion (Wt)t≥0.

▶ g : R → R is Lipschitz continuous
▶ homogeneous Neumann boundary condition

∇u · n⃗ = 0

▶ initial value u(0, ·) = u0 for a F0-measurable random variable
u0 ∈ L2(Ω;H1(Λ)).
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Some useful facts on stochastic analysis

▶ A filtration (Ft)t≥0 is a family of σ-fields (Ft)t≥0 satisfying
Ft ⊆ A for all t ≥ 0 and Fs ⊆ Ft for all s ≤ t.

▶ A stochastic process (Wt)t≥0 is a Brownian motion with
respect to (Ft)t≥0 iff

• W0 = 0
• For any fixed t ∈ [0,T ], the random variable Wt is

Ft-measurable, i.e., (Ft)t≥0-adapted
• For for 0 ≤ s ≤ t, Wt −Ws is N(0, t − s)-distributed and

independent of Fs

▶ Properties of the Itô integral

E
[∫ T

0
ϕ(s) dWs

]
= 0

E

[∥∥∥∥∫ T

0
ϕ(s) dWs

∥∥∥∥2]
= E

[∫ T

0
∥ϕ(s)∥2 ds

]
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Finite-volume approximation of the variational solution

A variational solution to the heat equation with multiplicative
Lipschitz noise is a (Ft)t≥0-adapted stochastic process

u ∈ L2(Ω; C([0,T ]; L2(Λ))) ∩ L2(Ω; L2(0,T ;H1(Λ)))

such that, for all t ∈ [0,T ], in L2(Λ), P-a.s. in Ω,

u(t)− u0 −
∫ t

0
∆u(s) ds =

∫ t

0
g(u(s)) dWs

▶ From classical results (see, e.g., [Pardoux 1975], [Krylov,
Rozovskii 1981], [Liu, Röckner 2015],. . .) existence and
uniqueness of a variational solution is well-known.

We propose a finite-volume scheme, semi-implicit in time and a
Two-Point Flux Approximation (TPFA) in space and show its
convergence to the variational solution.
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The mesh on Λ

Let T be an admissible mesh consisting of open, polygonal and
convex subsets, i.e., control volumes K ∈ T

xK xL

σ = K |L

dK |L

▶ To each K ∈ T we associate a point xK ∈ K , called center
▶ σ = K |L is the interface between two neighbouring control

volumes K , L ∈ T , called edge
▶ For two neighbouring control volumes K , L ∈ T with centers

xK , xL we have the orthogonality condition

−−→xkxL⊥K |L
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TPFA for the Laplace operator

For u ∈ C2(Λ) with ∇u · n⃗ = 0, K ∈ T , by the divergence theorem∫
K
∆u dx =

∮
∂K

∇u · n⃗K dS
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TPFA for the Laplace operator

For u ∈ C2(Λ) with ∇u · n⃗ = 0, K ∈ T by the divergence theorem∫
K
∆u dx =

∮
∂K

∇u · n⃗K dS

=
∑

σ∈Eint∩EK

∮
σ
∇u · n⃗K |L dS

▶ EK := set of edges of K for K ∈ T
▶ Eint := set of all interior edges of T
▶ on σ ∈ Eint , n⃗K = n⃗K |L pointing towards a neighbouring

control volume L ∈ T
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TPFA for the Laplace operator

For u ∈ C2(Λ) with ∇u · n⃗ = 0, K ∈ T by the divergence theorem
and the orthogonality condition on T∫

K
∆u dx =

∮
∂K

∇u · n⃗K dS

=
∑

σ∈Eint∩EK

∮
σ
∇u · n⃗K |L dS

=
∑

σ∈Eint∩EK

∮
σ
∇u · (xL − xK )

dK |L
dS

▶ EK := set of edges of K for K ∈ T
▶ Eint := set of all interior edges of T
▶ n⃗K = n⃗K |L pointing towards L ∈ T , dK |L := |xK − xL|.
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TPFA for the Laplace operator

For u ∈ C2(Λ) with ∇u · n⃗ = 0, K ∈ T by the divergence theorem,
the orthogonality condition on T and Taylor expansion∫

K
∆u dx =

∮
∂K

∇u · n⃗K dS

=
∑

σ∈Eint∩EK

∮
σ
∇u · n⃗K |L dS

=
∑

σ∈Eint∩EK

∮
σ
∇u·(xL − xK )

dK |L
dS

=
∑

σ∈Eint∩EK

(uL − uK )
mσ

dK |L
+ o(size(T ))

▶ EK := set of edges of K for K ∈ T
▶ Eint := set of all interior edges of T
▶ n⃗K = n⃗K |L pointing towards L ∈ T , dK |L := |xK − xL|.
▶ uK := u(xK ), uL := u(xL), mσ := length of σ
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TPFA for the Laplace operator

For u ∈ C2(Λ), with ∇u · n⃗ = 0 and K ∈ T by the divergence
theorem, the orthogonality condition on T and Taylor expansion∫

K
∆u dx =

∮
∂K

∇u · n⃗K dS

=
∑

σ∈Eint∩EK

∮
σ
∇u · n⃗K |L dS

=
∑

σ∈Eint∩EK

∮
σ
∇u · (xL − xK )

dK |L
dS

=
∑

σ∈Eint∩EK

(uL − uK )
mσ

dK |L︸ ︷︷ ︸+ o(size(T ))

two point flux approximation for ∆u
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The finite-volume scheme

Proposition [Bauzet, Nabet, Schmitz, Z., ’22]
For h > 0, let Th be an admissible mesh with size(Th) = h and
mK := |K | for K ∈ Th. For N ∈ N, let △t := T

N and tn := n△t for
n = 0, . . . ,N.

For any given Ftn -measurable random vector (unK )K∈Th , there exists
a Ftn+1-measurable random vector (un+1

K )K∈Th satisfying

mK (u
n+1
K − unK ) +△t

∑
σ∈Eint∩EK

mσ

dK |L
(un+1

K − un+1
L )

= mKg(u
n
K )(Wtn+1 −Wtn)

(FV)

for all K ∈ Th, P-a.s. in Ω.
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Main result

For h > 0, let Th be an admissible mesh with size(Th) = h. For
N ∈ N, let △t := T

N and tn := n△t for n = 0, . . . ,N. For any
K ∈ Th let

u0
K :=

1
mK

∫
K
u0(x) dx .

For n ∈ {0, . . . ,N − 1}, let (un+1
K )K∈Th be the solution of (FV)

obtained by iteration starting with the random vector (u0
K )K∈Th .

Then, the step functions

urh,N(t, x) := un+1
K , t ∈ [tn, tn+1), x ∈ K (not adapted)

ulh,N(t, x) := unK , t ∈ [tn, tn+1), x ∈ K (adapted)

converge in Lp(Ω, L2(0,T ; L2(Λ))) for all 1 ≤ p < 2 towards the
unique variational solution of the heat equation with multiplicative
Lipschitz noise.
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Fundamental inequality

mK (u
n+1
K − unK ) +△t

∑
σ∈Eint∩EK

mσ

dK |L
(un+1

K − un+1
L )

= mKg(u
n
K )(Wtn+1 −Wtn)
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Fundamental inequality

∑
K∈Th

mK (u
n+1
K − unK )u

n+1
K +△t

∑
K∈Th

∑
σ∈Eint∩EK

mσ

dK |L
(un+1

K − un+1
L )un+1

K

=
∑
K∈Th

mKg(u
n
K )(Wtn+1 −Wtn)u

n+1
K
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Fundamental inequality

=
∑
σ∈Eint

mσ

dK |L
|un+1

K − un+1
L |2

∑
K∈Th

mK (u
n+1
K − unK )u

n+1
K +△t

︷ ︸︸ ︷∑
K∈Th

∑
σ∈Eint∩EK

mσ

dK |L
(un+1

K − un+1
L )un+1

K

=
∑
K∈Th

mKg(u
n
K )(Wtn+1 −Wtn)u

n+1
K
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Fundamental inequality

∑
K∈Th

mK

2
E
[
|un+1

K |2 − |unK |2 + |un+1
K − unK |2

]

+△tE

 ∑
σ∈Eint

mσ

dK |L
|un+1

K − un+1
L |2


=

∑
K∈Th

mKE
[
g(unK )(Wtn+1 −Wtn)u

n+1
K

]

9/24



Fundamental inequality

∑
K∈Th

mK

2
E
[
|un+1

K |2 − |unK |2 + |un+1
K − unK |2

]

+△tE

 ∑
σ∈Eint

mσ

dK |L
|un+1

K − un+1
L |2


=

∑
K∈Th

mKE
[
g(unK )(Wtn+1 −Wtn)(u

n+1
K − unK )

]
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Fundamental inequality

∑
K∈Th

mK

2
E
[
|un+1

K |2 − |unK |2 + |un+1
K − unK |2

]

+△tE

 ∑
σ∈Eint

mσ

dK |L
|un+1

K − un+1
L |2


≤

∑
K∈Th

mK

2
(
△tE

[
|g(unK )|2

]
+ E

[
|un+1

K − unK |2
])
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Fundamental inequality

∑
K∈Th

mK

2
E
[
|un+1

K |2 − |unK |2
]
+ E

∫ tn+1

tn

∑
σ∈Eint

mσ

dK |L
|un+1

K − un+1
L |2 dt


≤

∑
K∈Th

mK

2
E
[∫ tn+1

tn

|g(unK )|2 dt
]

for all n ∈ {0, . . . ,N − 1}.
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Consequences of the fundamental inequality

Using the Lipschitz continuity of g : R → R and a discrete
Gronwall inequality, it follows that
▶ the sequences of step functions (ulh,N)h,N and (urh,N)h,N
▶ the norm of the discrete gradient, i.e.,

∥∇hurh,N∥2 = 2E

N−1∑
n=0

∫ tn+1

tn

∑
σ∈Eint

mσ

dK |L
|un+1

K − un+1
L |2 dt


are bounded in L2(Ω; L2(0,T ; L2(Λ))) by constants not depending
on the discretization parameters N ∈ N and h > 0.
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The discrete gradient

For t ∈ [tn, tn+1), n ∈ {0, . . . ,N − 1} we associate to the step
function urh,N given by (FV) a discrete gradient

∇hurh,N(t, x) =

2
un+1
L − un+1

K

dK |L
nKL, if x ∈ Dσ, σ = K |L ∈ Eint;

0, else .

which is piecewise constant on the diamond cells (Dσ)σ∈Eint .

xK xL
Dσ

σ=K |L
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Weak convergence and improved regularity

There exists a function u ∈ L2(Ω; L2(0,T ; L2(Λ))) such that,
passing to a subsequence if necessary,

ulh,N and urh,N ⇀ u

weakly in L2(Ω; L2(0,T ; L2(Λ))) for N → +∞, h → 0.

Proposition [Eymard, Gallouët ’03]
u ∈ L2(Ω; L2(0,T ;H1(Λ))) and

∇hurh,N ⇀ ∇u

weakly in L2(Ω; L2(0,T ; L2(Λ)2))) for N → +∞, h → 0

...but weak convergence is not compatible with the nonlinear
diffusion term g : R → R
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Time and space translate estimates

Lemma [Bauzet, Nabet, Schmitz, Z. ’22]
For any α ∈ (0, 1

2), (u
l
h,N)h,N is bounded in the space

L2(Ω; L2(0,T ;W α,2(Λ))) ∩ L2(Ω;W α,2(0,T ; L2(Λ))).

Idea of proof: Uniform estimates on the time and space translates
of approximate solutions associated with (FV) are useful to find
bounds on the Gagliardo seminorms for (ulh,N)h,N .

L2(0,T ;W α,2(Λ)) ∩W α,2(0,T ; L2(Λ))
compact
↪→ L2(0,T ; L2(Λ))

Lemma
=⇒ The sequence of laws L(ulh,N)h,N on L2(0,T ; L2(Λ)) is tight.

Prokhorov
=⇒ Up to a subsequence, (ulh,N)h,N converges in law to a

probability measure µ∞.
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Theorem of Skorokhod

On a new probability space (Ω′,A′,P′)

▶ there exist random variables v0, (v lh,N)h,N , u∞ with

L(v0) = L(u0), L(v lh,N) = L(ulh,N) for all h > 0, N ∈ N,

L(u∞) = µ∞

and
v lh,N

h,N−→ u∞ in L2(0,T ; L2(Λ)) P′-a.s. in Ω′,

▶ there exists a stochastic process W∞ and a sequence of
Brownian motions (W h,N)h,N such that

W h,N h,N−→ W∞ in C([0,T ]) P′-a.s. in Ω′
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Consequences of Skorokhod’s Theorem

▶ v lh,N is a step function, i.e., for any K ∈ Th,
n ∈ {0, . . . ,N − 1}, v lh,N(t, x) := vnK for all t ∈ [tn, tn+1),
x ∈ K .

▶ For any n ∈ {0, . . . ,N − 1}, the random vector (vn+1
K )K∈Th is

a solution of

mK (v
n+1
K − vnK ) +△t

∑
σ∈Eint∩EK

mσ

dK |L
(vn+1

K − vn+1
L )

= mKg(v
n
K )(W

h,N
tn+1 −W h,N

tn )

(FV’)

for all K ∈ Th.
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Identification of the stochastic integral

▶ For any, h > 0, N ∈ N there exists a filtration (Fh,N
t )t≥0 such

that v lh,N is adapted to (Fh,N
t )t≥0 and W h,N = (W h,N

t )t≥0 is a

Brownian motion with respect to (Fh,N
t )t≥0.

mK (v
n+1
K − vnK ) +△t

∑
σ∈Eint∩EK

mσ

dK |L
(vn+1

K − vn+1
L )

= mKg(v
n
K )(W

h,N
tn+1 −W h,N

tn )

for all K ∈ Th.
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mK (v
n+1
K − vnK ) +△t

∑
σ∈Eint∩EK

mσ

dK |L
(vn+1

K − vn+1
L )

=

∫
K

∫ tn+1

tn

g(v lh,N) dW
h,N
t dx

for all K ∈ Th.
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Identification of the stochastic integral

▶ For any, h > 0, N ∈ N there exists a filtration (Fh,N
t )t≥0 such

that v lh,N is adapted to (Fh,N
t )t≥0 and W h,N = (W h,N

t )t≥0 is a

Brownian motion with respect to (Fh,N
t )t≥0.

▶ There exists a filtration (F∞
t )t≥0 such that u∞ has a

predictable dP′ ⊗ dt-representative and W∞ = (W∞
t )t≥0 is a

Brownian motion with respect to (F∞
t )t≥0.

▶ By a result of [Debussche, Glatt-Holtz, Temam 2011],∫
Λ

∫ T

0
g(v lh,N) dW

h,N
t dx

h,N−→
∫
Λ

∫ T

0
g(u∞) dW∞

t dx

P′-a.s. in Ω′.
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Strong convergence of finite-volume approximations

Proposition [Bauzet, Nabet, Schmitz, Z., ’22]
(Ω′,P′,A′, (F∞

t )t≥0,W
∞, u∞, v0) is a martingale solution for the

heat equation with multiplicative Lipschitz noise.

▶ Solutions are pathwise unique.
▶ We may construct two martingale solutions with respect to the

same stochastic basis and with the same initial value.
▶ According to [Gyöngy, Krylov 1996]: up to a not relabeled

subsequence, (ulh,N)h,N and (urh,N)h,N converge P-a.s. in
L2(0,T ; L2(Λ))

▶ Thanks to the uniform bounds in L2(Ω; L2(0,T ; L2(Λ))), by
Vitali’s theorem the convergence also holds in
Lp(Ω; L2(0,T ; L2(Λ))) for 1 ≤ p < 2.

▶ The joint limit u is the unique variational solution of the heat
equation with multiplicative Lipschitz noise.
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The stochastic heat equation with convection

du −∆u dt+div(vu) dt = g(u) dWt+β(u) dt in Ω× (0,T )× Λ

u(0, ·) = u0 in Ω× Λ

∇u · n = 0 on ∂Λ

▶ v ∈ C 1([0,T ]× Λ;R2)

▶ div(v) = 0 in [0,T ]× Λ

▶ v · n⃗ = 0 on [0,T ]× ∂Λ

▶ β : R → R Lipschitz continuous with β(0) = 0
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Upwind scheme for the convection term

For u ∈ C 1(Λ;R), v ∈ C 1(Λ;R2) with v · n⃗ = 0 on ∂Λ and K ∈ T∫
K
div(v(x)u(x)) dx =

∫
∂K

v(x) · n⃗K (x)u(x) dγ(x)

=
∑

σ∈Eint∩EK

∫
σ
v(x) · n⃗K |Lu(x) dγ(x)

≈
∑

σ∈Eint∩EK

mσvK ,σuσ.

Where, uσ is interpreted as the quantity of u transported through
the interface σ = K |L by the velocity vK ,σ:

vK ,σ :=
1
mσ

∫
σ
v(x) · n⃗K |L dγ(x), uσ :=

{
uK , if vK ,σ ≥ 0
uL, if vK ,σ < 0.
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Calculus for the upwind approximation

If div(v) = 0 in Λ, for K ∈ T we have∑
σ∈Eint∩EK

mσvK ,σuσ =
∑

σ∈Eint∩EK

mσvK ,σ(uσ − uK ).

since, for any K ∈ T ,∑
σ∈Eint∩EK

mσvK ,σuK =
∑

σ∈Eint∩EK

uK

∫
σ
v(x) · n⃗K |L dγ(x)

= uK

∫
∂K

v(x) · n⃗K (x) dγ(x)

= uK

∫
K
div(v(x)) dx = 0.

Moreover, since vK ,σ = (vK ,σ)
+ − (vK ,σ)

−, we have∑
σ∈Eint∩EK

mσvK ,σ(uσ − uK ) =
∑

σ=K |L∈Eint∩EK

mσ(vK ,σ)
−(uK − uL).
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Semi-implicit finite-volume scheme

Proposition [Bauzet, Nabet, Schmitz, Z., ’23]
For any given Ftn -measurable random vector (unK )K∈T there exists
a unique Ftn+1-measurable random vector (un+1

K )K∈T satisfying

mK

∆t
(un+1

K − unK ) +
∑

σ∈Eint∩EK

mσ(v
n+1
K ,σ )−(un+1

K − un+1
L )

+
∑

σ∈Eint∩EK

mσ

dK |L
(un+1

K − un+1
L )

=
mK

∆t
g(unK )(W (tn+1)−W (tn)) +mKβ(u

n+1
K ),

for all K ∈ T , P-a.s. in Ω, where, for σ = K |L

vn+1
K ,σ :=

1
mσ∆t

∫ tn+1

tn

∫
σ

v(t, x) · nKL dγ(x) dt.
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Convergence result

Theorem [Bauzet, Schmitz, Z., ’23]
The finite-volume approximations ulh,N and urh,N converge strongly
in L2(Ω; L2(0,T ; L2(Λ))) to the unique solution of the stochastic
heat equation with convection, i.e., to a predictable stochastic
process u ∈ L2(Ω;C ([0,T ]; L2(Λ))) ∩ L2(Ω; L2(0,T ;H1(Λ))) such
that

u(t)− u0 −
∫ t

0
∆u(s) ds +

∫ t

0
div(v(s, ·)u(s)) ds

=

∫ t

0
g(u(s)) dWs +

∫ t

0
β(u(s)) ds.

for all t ∈ [0,T ], in L2(Λ), P-a.s. in Ω.
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Proof of the convergence result

▶ Weak convergences of g(ulh,N), β(u
r
h,N) towards gu and βu,

respectively
▶ Identification of the weak limits gu = g(u), βu = β(u) via

stochastic energy inequalities using an exponential weighted in
time norm

▶ The key ingredient is

Lemma [Bauzet, Zimmermann, S. ’23]
For any c > 0, the stochastic process u satisfies∫ T

0

∫ t

0
e−csE

[∫
Λ
|∇u(s, x)|2 dx

]
ds dt

≤ lim inf
h→0,N→∞

∫ T

0

∫ t

0
e−csE

[
|urh,N(s)|21,h

]
ds dt.

where | · |1,h is the discrete H1-seminorm.
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Thank you for your attention.
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