Well-posedness and Lewy-Stampaccia's inequalities for nonlinear stochastic evolution equations

Aleksandra Zimmermann
(joint work with N. Sapountzoglou, Y. Tahraoui and G. Vallet)
Stochastic Models in Mechanics: Theoretical and Numerical Aspects

Marseille, August 31st, 2023

Obstacle problems

General form: $\mathcal{A} u \geq f, u \geq \psi$ and $\langle\mathcal{A} u-f, u-\psi\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}=0$

- for elliptic PDE: $\mathcal{A} u=A u$ with $A: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$
- for parabolic PDE:

$$
\mathcal{A} u=\partial_{t} u+A u
$$

- for stochastic PDE:

$$
\mathcal{A} u=\partial_{t}\left(u-\int_{0} G(u) d W\right)+A u
$$

Lewy-Stampaccia's inequality: $0 \leq \mathcal{A} u-f \leq(f-\mathcal{A} \psi)^{-}$
where $r^{-}=-\min (0, r)$ for all $r \in \mathbb{R}$

Obstacle problems in applications

Signorini type problems

Stefan type problems

Also: fluid flow in porous medium with a constraint on the pressure, Model with constraints for vehicular traffic jams....

A stochastic pseudomonotone parabolic obstacle problem

Let $T>0, D \subset \mathbb{R}^{d}$ a bounded Lipschitz domain, $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ a stochastic basis with the usual assumptions, $\Omega_{T}:=\Omega \times(0, T)$. We study existence and uniqueness of solutions (u, ρ) to
(VI) $\begin{cases}d u-\operatorname{div} a(u, \nabla u) d t+\rho d t=f d t+G(u) d W(t) & \text { in } D \times \Omega_{T}, \\ u(t, 0)=u_{0} & \text { in } L^{2}\left(\Omega ; L^{2}(D)\right) \\ u=0 & \text { in } \partial D \times \Omega_{T} \\ u \geq \psi & \text { in } D \times \Omega_{T} \\ -\rho \geq 0 \text { and }\langle\rho, u-\psi\rangle=0 & \end{cases}$

- u_{0} is \mathcal{F}_{0}-measurable, $u_{0} \geq \psi(0)$
- - div $a(v, \nabla v)$ is a pseudomonotone Leray-Lions operator from $W_{0}^{1, p}(D)$ to its dual space $W^{-1, p^{\prime}}(D), \max \left(1, \frac{2 d}{d+2}\right)<p<\infty$
- $f \in L^{p^{\prime}}\left(\Omega_{T} ; W^{-1, p^{\prime}}(D)\right)$ is predictable
- ψ is an appropriate random obstacle function

Assumptions on the nonlinear operator

- $a: D \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a Carathéodory function on $D \times \mathbb{R}^{d+1}$,
- a is monotone, i.e., for a.e. $x \in D$, for all $\lambda \in \mathbb{R}, \xi, \eta \in \mathbb{R}^{d}$,

$$
(a(x, \lambda, \xi)-a(x, \lambda, \eta)) \cdot(\xi-\eta) \geq 0
$$

- There exist $\bar{\alpha}>0$ and $C_{1}^{a}, C_{2}^{a}, \bar{\gamma} \geq 0, \bar{h} \in L^{1}(D), \bar{k} \in L^{p^{\prime}}(D)$, and an exponent $q<p$ such that,

$$
\begin{aligned}
a(x, \lambda, \xi) \cdot \xi & \geq \bar{\alpha}|\xi|^{p}-\bar{\gamma}|\lambda|^{q}+\bar{h}(x) \\
|a(x, \lambda, \xi)| & \leq \bar{k}(x)+C_{1}^{a}|\lambda|^{p-1}+C_{2}^{a}|\xi|^{p-1}
\end{aligned}
$$

for a.e. $x \in D$, for all $\lambda \in \mathbb{R}$ and for all $\xi \in \mathbb{R}^{d}$, There exists $C_{3}^{a} \geq 0$ and a non-negative function $l \in L^{p^{\prime}}(D)$ such that

$$
\left|a\left(x, \lambda_{1}, \xi\right)-a\left(x, \lambda_{2}, \xi\right)\right| \leq\left(C_{3}^{a}|\xi|^{p-1}+l(x)\right)\left|\lambda_{1}-\lambda_{2}\right|
$$

for all $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, for all $\xi \in \mathbb{R}^{d}$ and a.e. $x \in D$.
Well-known example:
$-\operatorname{div} a(u, \nabla u)=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+F(u)\right), p \geq 2$

Q-Wiener Process

- Let $\left(\beta^{k}\right)_{k}$ be a sequence of independent $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motions on $(\Omega, \mathcal{F}, \mathbb{P})$, i.e., for any $k \in \mathbb{N}$,
- $\beta^{k}=\left(\beta^{k}(t)\right)_{t \geq 0}$ is a real-valued stochastic process with $\beta^{k}(0)=0$
- For all $t \geq 0, \omega \mapsto \beta^{k}(t)(\omega)$ is a \mathcal{F}_{t}-measurable random variable
- For all $0 \leq s \leq t$, the increments $\beta^{k}(t)-\beta^{k}(s)$ are $N(0, t-s)$ and independent of \mathcal{F}_{s}
- We fix a separable Hilbert space U such that $L^{2}(D) \subset U$ and a non-negative, symmetric trace class operator $Q: U \rightarrow U$ with

$$
Q^{1 / 2}(U)=L^{2}(D)
$$

- Let $\left(e_{k}\right)_{k}$ be an orthonormal basis of U made of eigenvectors of Q with corresponding eigenvalues $\left(\lambda_{k}\right)_{k} \subset[0, \infty)$.
Then,

$$
W(t):=\sum_{k=1}^{\infty} \sqrt{\lambda_{k}} e_{k} \beta^{k}(t), t \geq 0
$$

is a $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-adapted Q-Wiener process with values in U.

The Itô integral for a Q-Wiener process

A linear operator $A: L^{2}(D) \rightarrow L^{2}(D)$ is a Hilbert-Schmidt operator, i.e., $A \in \operatorname{HS}\left(L^{2}(D)\right)$, iff

$$
\|A\|_{\mathrm{HS}}^{2}:=\sum_{k=1}^{\infty}\left\|A\left(Q^{1 / 2}\left(e_{k}\right)\right)\right\|_{L^{2}(D)}^{2}<\infty
$$

For a predictable, square-integrable process $\Phi: \Omega \times[0, T] \rightarrow \operatorname{HS}\left(L^{2}(D)\right)$ and $t \in[0, T]$, the stochastic integral in the sense of Itô is given by

$$
\int_{0}^{t} \Phi(s) d W=\sum_{k=1}^{\infty} \int_{0}^{t} \Phi(s)\left(\sqrt{\lambda_{k}} e_{k}\right) d \beta^{k}(s)
$$

The Itô isometry holds true, i.e.,

$$
\mathbb{E}\left\|\int_{0}^{t} \Phi(s) d W\right\|_{L^{2}(D)}^{2}=\mathbb{E} \int_{0}^{t}\|\Phi(s)\|_{\mathrm{HS}}^{2} d s
$$

Assumptions on the noise

- $(W(t))_{t \geq 0}$ is a Q-Wiener process with respect to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$
- Let $\operatorname{HS}\left(L^{2}(D)\right)$ denote the space of Hilbert-Schmidt operators from $L^{2}(D)$ to $L^{2}(D)$
- The noise may be additive and multiplicative in the following sense: $G: \Omega_{T} \times L^{2}(D) \rightarrow \operatorname{HS}\left(L^{2}(D)\right)$ is given by

$$
G(\omega, t, u)=g(\omega, t)+\sigma(\omega, t, u)
$$

with predictable mappings $g \in L^{2}\left(\Omega_{T} ; \operatorname{HS}\left(L^{2}(D)\right)\right)$ and $\sigma: \Omega_{T} \times L^{2}(D) \rightarrow \operatorname{HS}\left(L^{2}(D)\right)$.

- Moreover, $\sigma(\omega, t, 0)=0$ and

$$
\|\sigma(\omega, t, u)-\sigma(\omega, t, v)\|_{\mathrm{HS}} \leq L\|u-v\|_{L^{2}(D)}
$$

for a constant $L \geq 0$.

Assumptions on the obstacle

$\psi \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{2}\left(\Omega_{T} ; L^{2}(D)\right)$ is predictable with

$$
\partial_{t}\left(\psi-\int_{0} G(\psi) d W\right) \in L^{p^{\prime}}\left(\Omega_{T} ; W^{-1, p^{\prime}}(D)\right)
$$

The equation

$$
d u-\operatorname{div} a(u, \nabla u) d t+\rho d t=f d t+G(u) d W(t)
$$

ist coupled to the obstacle by
Ordered dual assumption: There exist nonnegative elements h^{+}, h^{-}of $\overline{L^{p^{\prime}}}\left(\Omega_{T} ; W^{-1, p^{\prime}}(D)\right)$ such that

$$
f-\partial_{t}\left(\psi-\int_{0} G(\psi) d W\right)+\operatorname{div} a(\psi, \nabla \psi)=h^{+}-h^{-}
$$

the ordered dual assumption provides additional regularity on ρ and well-posedness for Lewy-Stampaccia's inequality

Notion of solution

(u, ρ) is a solution to Problem (VI) iff:

- $u \in L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$ is a predictable process
- $u \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right), u(0, \cdot)=u_{0}$
- $u \geq \psi$
- $\rho \in L^{p^{\prime}}\left(\Omega_{T} ; W^{-1, p^{\prime}}(D)\right)$ with $-\rho \geq 0$ and

$$
\mathbb{E}\left[\int_{0}^{T}\langle\rho, u-\psi\rangle d t\right]=0
$$

- For all $t \in[0, T]$, P-a.s. in Ω we have

$$
u(t)-u_{0}+\int_{0}^{t}-\operatorname{div} a(u, \nabla u)+\rho d s=\int_{0}^{t} f d s+\int_{0}^{t} G(u) d W
$$

Lewy-Stampaccia's inequality

With the ordered dual assumption, a solution (u, ρ) to the variational inequality

$$
d u-\operatorname{div} a(u, \nabla u) d t+\rho d t=f d t+G(u) d W(t), u \geq \psi,-\rho \geq 0
$$

satisfies Lewy-Stampacchia's inequality iff

$$
\begin{aligned}
& \partial_{t}\left(u-\int_{0} G(u) d W\right)-\operatorname{div} a(u, \nabla u)-f \\
& \leq\left(f-\partial_{t}\left(\psi-\int_{0}^{\cdot} G(\psi) d W\right)+\operatorname{div} a(\psi, \nabla \psi)\right)^{-}=h^{-}
\end{aligned}
$$

Main result

Theorem [STVZ; 2023]: There exists a unique solution (u, ρ) to (VI). Moreover, (u, ρ) satisfies Lewy-Stampacchia's inequality

$$
\partial_{t}\left(u-\int_{0}^{.} G(u) d W\right)-\operatorname{div} a(u, \nabla u)-f \leq h^{-}
$$

Penalisation

For $\varepsilon>0$, we consider the approximation

$$
\partial_{t}\left(u_{\varepsilon}-\int_{0} \widetilde{G}\left(u_{\varepsilon}\right) d W\right)-\operatorname{div} \widetilde{a}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}=f
$$

where

- $\widetilde{G}\left(u_{\varepsilon}\right)=G\left(\omega, t, \max \left(\psi, u_{\varepsilon}\right)\right)=g(\omega, t)+\sigma\left(\omega, t, \max \left(\psi, u_{\varepsilon}\right)\right)$
- $\widetilde{a}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)=a\left(x, \max \left(\psi, u_{\varepsilon}\right), \nabla u_{\varepsilon}\right)$
- $\left(u_{\varepsilon}-\psi\right)^{-}=-\min \left(u_{\varepsilon}-\psi, 0\right)$

Δ
Existence and uniqueness of solutions u_{ε} to $\left(P_{\varepsilon}\right)$ have to be provided.

A higher-order singular perturbation

- Let $\nu>\max \{p, 2,2 p(p-1)\}$ and $m \in \mathbb{N}$ be such that $H_{0}^{m}(D)$ has a continuous injection into $W_{0}^{1,2 p}(D) \cap L^{\infty}(D)$
- $\partial J: W_{0}^{m, \nu}(D) \rightarrow W^{-m, \nu^{\prime}}(D)$ is defined by

$$
\langle\partial J(u), v\rangle=\sum_{|\alpha| \leq m} \int_{D}\left(1+\left|D^{\alpha} u\right|^{\nu-2}\right) D^{\alpha} u D^{\alpha} v d x
$$

Proposition [STVZ; 2023]: For $\varepsilon>0, \delta>0$ there exists a unique solution u_{ε}^{δ} to

$$
\begin{aligned}
& d u_{\varepsilon}^{\delta}+\left(\delta \partial J\left(u_{\varepsilon}^{\delta}\right)-\operatorname{div} \widetilde{a}\left(u_{\varepsilon}^{\delta}, \nabla u_{\varepsilon}^{\delta}\right)-\frac{1}{\varepsilon}\left(u_{\varepsilon}^{\delta}-\psi\right)^{-}\right) d t \\
& =f d t+\widetilde{G}\left(u_{\varepsilon}^{\delta}\right) d W
\end{aligned}
$$

Proof: The conditions ($H 1$), $\left(H 2^{\prime}\right),(H 3)$ and ($H 4^{\prime}$) of [Liu, Röckner; 2015, Section 5.1] are satisfied with $\beta=0$ and $\alpha=\nu$

Compactness with respect to the parameter $\delta>0$

For fixed $\varepsilon>0$, the laws

$$
\mu_{\varepsilon}^{\delta}=\mathcal{L}\left(u_{\varepsilon}^{\delta}, \widetilde{G}\left(u_{\varepsilon}^{\delta}\right), \psi, G(0), \sigma, W, f, u_{0}\right)
$$

are tight. Prokhorov's theorem yields

$$
\mu_{\varepsilon}^{\delta} \stackrel{*}{\longrightarrow} \mu_{\infty}
$$

up to a subsequence for $\delta \rightarrow 0^{+}$. Skorokhod's theorem yields the existence of random variables

$$
\left(\bar{u}_{\varepsilon}^{\delta}, \widetilde{\bar{G}}\left(\bar{u}_{\varepsilon}^{\delta}\right), \bar{\psi}, \bar{G}_{0}, \bar{\sigma}, \bar{W}, \bar{f}, \overline{u_{0}}\right)
$$

on a new probability space $(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}})$ such that

$$
\begin{aligned}
& d \bar{u}_{\varepsilon}^{\delta}+\left(\delta \partial J\left(\bar{u}_{\varepsilon}^{\delta}\right)-\operatorname{div} \widetilde{a}\left(\bar{u}_{\varepsilon}^{\delta}, \nabla \bar{u}_{\varepsilon}^{\delta}\right)-\frac{1}{\varepsilon}\left(\bar{u}_{\varepsilon}^{\delta}-\bar{\psi}\right)^{-}\right) d t \\
& =\bar{f} d t+\widetilde{\bar{G}}\left(\bar{u}_{\varepsilon}^{\delta}\right) d \bar{W}
\end{aligned}
$$

and $\bar{u}_{\varepsilon}^{\delta}$ converges to a random variable $\bar{u}_{\varepsilon}^{\infty}$ a.s. in $\bar{\Omega}$ for $\delta \rightarrow 0^{+}$

Passage to the limit for $\delta \rightarrow 0^{+}$

For $\varepsilon>0$ fixed

- We use the $\overline{\mathbb{P}}$-a.s. convergence of $\bar{u}_{\varepsilon}^{\delta}$ to a random variable $\bar{u}_{\varepsilon}^{\infty}$ in $\bar{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$
d \bar{u}_{\varepsilon}^{\infty}+\left(A^{\infty}-\frac{1}{\varepsilon}\left(\bar{u}_{\varepsilon}^{\infty}-\bar{\psi}\right)^{-}\right) d t=\bar{f} d t+\widetilde{\bar{G}}\left(\bar{u}_{\varepsilon}^{\infty}\right) d \bar{W}
$$

Passage to the limit for $\delta \rightarrow 0^{+}$

For $\varepsilon>0$ fixed

- We use the $\overline{\mathbb{P}}$-a.s. convergence of $\bar{u}_{\varepsilon}^{\delta}$ to a random variable $\bar{u}_{\varepsilon}^{\infty}$ in $\bar{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$
d \bar{u}_{\varepsilon}^{\infty}+\left(A^{\infty}-\frac{1}{\varepsilon}\left(\bar{u}_{\varepsilon}^{\infty}-\bar{\psi}\right)^{-}\right) d t=\bar{f} d t+\widetilde{\bar{G}}\left(\bar{u}_{\varepsilon}^{\infty}\right) d \bar{W}
$$

- From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$
A^{\infty}=-\operatorname{div} \tilde{a}\left(\bar{u}_{\varepsilon}^{\infty}, \nabla \bar{u}_{\varepsilon}^{\infty}\right)
$$

Passage to the limit for $\delta \rightarrow 0^{+}$

For $\varepsilon>0$ fixed

- We use the $\overline{\mathbb{P}}$-a.s. convergence of $\bar{u}_{\varepsilon}^{\delta}$ to a random variable $\bar{u}_{\varepsilon}^{\infty}$ in $\bar{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$
d \bar{u}_{\varepsilon}^{\infty}-\left(\operatorname{div} \widetilde{a}\left(\bar{u}_{\varepsilon}^{\infty}, \nabla \bar{u}_{\varepsilon}^{\infty}\right)+\frac{1}{\varepsilon}\left(\bar{u}_{\varepsilon}^{\infty}-\bar{\psi}\right)^{-}\right) d t=\bar{f} d t+\overline{\bar{G}}\left(\bar{u}_{\varepsilon}^{\infty}\right) d \bar{W}
$$

- From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$
A^{\infty}=-\operatorname{div} \widetilde{a}\left(\bar{u}_{\varepsilon}^{\infty}, \nabla \bar{u}_{\varepsilon}^{\infty}\right)
$$

Passage to the limit for $\delta \rightarrow 0^{+}$

For $\varepsilon>0$ fixed

- We use the $\overline{\mathbb{P}}$-a.s. convergence of $\bar{u}_{\varepsilon}^{\delta}$ to a random variable $\bar{u}_{\varepsilon}^{\infty}$ in $\bar{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$
d \bar{u}_{\varepsilon}^{\infty}-\left(\operatorname{div} \widetilde{a}\left(\bar{u}_{\varepsilon}^{\infty}, \nabla \bar{u}_{\varepsilon}^{\infty}\right)+\frac{1}{\varepsilon}\left(\bar{u}_{\varepsilon}^{\infty}-\bar{\psi}\right)^{-}\right) d t=\bar{f} d t+\widetilde{\bar{G}}\left(\bar{u}_{\varepsilon}^{\infty}\right) d \bar{W}
$$

- From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$
A^{\infty}=-\operatorname{div} \widetilde{a}\left(\bar{u}_{\varepsilon}^{\infty}, \nabla \bar{u}_{\varepsilon}^{\infty}\right)
$$

- An L^{1}-contraction principle yields pathwise uniqueness of solutions. Then, [Gyöngy, Krylov; 1996 Lemma 1.1] yields the convergence in probability (up to a subsequence) of $\left(u_{\varepsilon}^{\delta}\right)_{\delta}$ towards an element u_{ε}

Passage to the limit for $\delta \rightarrow 0^{+}$

For $\varepsilon>0$ fixed

- We use the $\overline{\mathbb{P}}$-a.s. convergence of $\bar{u}_{\varepsilon}^{\delta}$ to a random variable $\bar{u}_{\varepsilon}^{\infty}$ in $\bar{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$
d u_{\varepsilon}+\left(-\operatorname{div} \widetilde{a}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}\right) d t=f d t+\widetilde{G}\left(u_{\varepsilon}\right) d W
$$

- From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$
A^{\infty}=-\operatorname{div} \widetilde{a}\left(\bar{u}_{\varepsilon}^{\infty}, \nabla \bar{u}_{\varepsilon}^{\infty}\right)
$$

- An L^{1}-contraction principle yields pathwise uniqueness of solutions. Then, [Gyöngy, Krylov; 1996 Lemma 1.1] yields the convergence in probability (up to a subsequence) of $\left(u_{\varepsilon}^{\delta}\right)_{\delta}$ towards an element u_{ε}

The variational inequality in the regular case

$$
d u_{\varepsilon}+\left(-\operatorname{div} \widetilde{a}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}\right) d t=f d t+\widetilde{G}\left(u_{\varepsilon}\right) d W
$$

Ordered dual assumption with regularity: $h^{-} \in L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right)$ for $\alpha=\max \left(2, p^{\prime}\right)$ and

$$
f-\partial_{t}\left(\psi-\int_{0} G(\psi) d W\right)+\operatorname{div} a(\psi, \nabla \psi)=h^{+}-h^{-}
$$

- Thanks to the penalisation term $-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$, the sequence $\left(u_{\varepsilon}\right)_{\varepsilon \geq 0}$ is nondecreasing for $\varepsilon \rightarrow 0^{+}$,
- Thanks to the regularity of $h^{-},-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$is bounded in $L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right)$ and $\left(u_{\varepsilon}-\psi\right)^{-} \rightarrow 0$ in $L^{2}\left(\Omega_{T} ; L^{2}(D)\right)$
- For $u:=\sup _{\varepsilon>0} u_{\varepsilon}, \quad \rho:=$ weak- $\lim _{\varepsilon \rightarrow 0^{+}}-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$we have

$$
u \geq \psi,-\rho \geq 0 \text { and } \mathbb{E}\left[\int_{0}^{T} \int_{D} \rho(u-\psi) d x d t=0\right]
$$

The variational inequality in the regular case

$$
d u+(-\operatorname{div} \widetilde{a}(u, \nabla u)+\rho) d t=f d t+\widetilde{G}(u) d W
$$

Ordered dual assumption with regularity: $h^{-} \in L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right)$ for $\alpha=\max \left(2, p^{\prime}\right)$ and

$$
f-\partial_{t}\left(\psi-\int_{0} G(\psi) d W\right)+\operatorname{div} a(\psi, \nabla \psi)=h^{+}-h^{-}
$$

- Thanks to the penalisation term $-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$, the sequence $\left(u_{\varepsilon}\right)_{\varepsilon \geq 0}$ is nondecreasing for $\varepsilon \rightarrow 0^{+}$,
- Thanks to the regularity of $h^{-},-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$is bounded in $L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right)$ and $\left(u_{\varepsilon}-\psi\right)^{-} \rightarrow 0$ in $L^{2}\left(\Omega_{T} ; L^{2}(D)\right)$
- For $u:=\sup _{\varepsilon>0} u_{\varepsilon}, \quad \rho:=$ weak- $\lim _{\varepsilon \rightarrow 0^{+}}-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$we have

$$
u \geq \psi,-\rho \geq 0 \text { and } \mathbb{E}\left[\int_{0}^{T} \int_{D} \rho(u-\psi) d x d t=0\right]
$$

The variational inequality in the regular case

$$
d u+(-\operatorname{div} a(u, \nabla u)+\rho) d t=f d t+G(u) d W
$$

Ordered dual assumption with regularity: $h^{-} \in L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right)$ for $\alpha=\max \left(2, p^{\prime}\right)$ and

$$
f-\partial_{t}\left(\psi-\int_{0}^{*} G(\psi) d W\right)+\operatorname{div} a(\psi, \nabla \psi)=h^{+}-h^{-}
$$

- Thanks to the penalisation term $-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$, the sequence $\left(u_{\varepsilon}\right)_{\varepsilon \geq 0}$ is nondecreasing for $\varepsilon \rightarrow 0^{+}$,
- Thanks to the regularity of $h^{-},-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$is bounded in $L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right)$ and $\left(u_{\varepsilon}-\psi\right)^{-} \rightarrow 0$ in $L^{2}\left(\Omega_{T} ; L^{2}(D)\right)$
- For $u:=\sup _{\varepsilon>0} u_{\varepsilon}, \quad \rho:=$ weak- $\lim _{\varepsilon \rightarrow 0^{+}}-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}$we have

$$
u \geq \psi,-\rho \geq 0 \text { and } \mathbb{E}\left[\int_{0}^{T} \int_{D} \rho(u-\psi) d x d t=0\right]
$$

Lewy-Stampaccia's inequalities in the regular case

$$
h^{-} \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right), \partial_{t} h^{-} \in L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

One has to prove:

$$
-\rho \leq h^{-}
$$

- For $\varepsilon>0$ it holds true that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}=-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-}+h^{-}-h^{-}
$$

Lewy-Stampaccia's inequalities in the regular case

$$
h^{-} \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right), \partial_{t} h^{-} \in L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

One has to prove

$$
-\rho \leq h^{-}
$$

- For $\varepsilon>0$ it holds true that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-} \geq-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}-h^{-}
$$

Lewy-Stampaccia's inequalities in the regular case

$$
h^{-} \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right), \partial_{t} h^{-} \in L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

One has to prove

$$
-\rho \leq h^{-}
$$

- For $\varepsilon>0$ it holds true that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-} \geq-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}-h^{-}
$$

- We write the SPDE for $\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)$

Lewy-Stampaccia's inequalities in the regular case

$$
h^{-} \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right), \partial_{t} h^{-} \in L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

One has to prove

$$
-\rho \leq h^{-}
$$

- For $\varepsilon>0$ it holds true that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-} \geq-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}-h^{-}
$$

- We write the SPDE for $\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)$
- We use Itô formula for a smooth approximation of $\left(r^{-}\right)^{2}$ to obtain the SPDE for $\left\|\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}\right\|_{L^{2}(D)}^{2}$

Lewy-Stampaccia's inequalities in the regular case

$$
h^{-} \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right), \partial_{t} h^{-} \in L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

One has to prove

$$
-\rho \leq h^{-}
$$

- For $\varepsilon>0$ it holds true that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-} \geq-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}-h^{-}
$$

- We write the SPDE for $\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)$
- We use Itô formula for a smooth approximation of $\left(r^{-}\right)^{2}$ to obtain the SPDE for $\left\|\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}\right\|_{L^{2}(D)}^{2}$
- For $\varepsilon \rightarrow 0^{+}$then it follows that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-} \rightarrow 0 \text { in } L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

Lewy-Stampaccia's inequalities in the regular case

$$
h^{-} \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right), \partial_{t} h^{-} \in L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

One has to prove

$$
-\rho \leq h^{-}
$$

- For $\varepsilon>0$ it holds true that

For $\varphi \geq 0, \varepsilon>0$

$$
\int_{D}-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{-} \varphi d x \geq \int_{D}\left(-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}-h^{-}\right) \varphi d x
$$

- We write the SPDE for $\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)$
- We use Itô formula for a smooth approximation of $\left(r^{-}\right)^{2}$ to obtain the SPDE for $\left\|\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}\right\|_{L^{2}(D)}^{2}$
- For $\varepsilon \rightarrow 0^{+}$then it follows that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-} \rightarrow 0 \text { in } L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

Lewy-Stampaccia's inequalities in the regular case

$$
h^{-} \in L^{p}\left(\Omega_{T} ; W_{0}^{1, p}(D)\right) \cap L^{\alpha}\left(\Omega_{T} ; L^{\alpha}(D)\right), \partial_{t} h^{-} \in L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

One has to prove

$$
-\rho \leq h^{-}
$$

- For $\varepsilon>0$ it holds true that

For $\varphi \geq 0, \varepsilon \rightarrow 0^{+}$

$$
\int_{D} \rho \varphi d x \geq \int_{D}-h^{-} \varphi d x
$$

- We write the SPDE for $\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)$
- We use Itô formula for a smooth approximation of $\left(r^{-}\right)^{2}$ to obtain the SPDE for $\left\|\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-}\right\|_{L^{2}(D)}^{2}$
- For $\varepsilon \rightarrow 0^{+}$then it follows that

$$
-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi+\varepsilon h^{-}\right)^{-} \rightarrow 0 \text { in } L^{2}\left(\Omega_{T} ; L^{2}(D)\right)
$$

General ordered dual assumption

$$
h^{-} \in L^{p^{\prime}}\left(\Omega_{T} ; W^{-1, p^{\prime}}(D)\right)
$$

- There exists an approximating sequence of regular, non-negative mappings (h_{n}) such that

$$
h_{n} \xrightarrow{n \rightarrow \infty} h^{-} \text {in } L^{p^{\prime}}\left(\Omega_{T} ; W^{-1, p^{\prime}}(D)\right)
$$

- Associated with h_{n}, for $n \in \mathbb{N}$ we define

$$
f_{n}=\partial_{t}\left(\psi-\int_{0} G(\psi) d W\right)-\operatorname{div} a(\cdot, \psi, \nabla \psi)+h^{+}-h_{n}
$$

- f_{n} converges to f in $L^{p^{\prime}}\left(\Omega_{T} ; W^{-1, p^{\prime}}(D)\right)$ for $n \rightarrow \infty$
- There exists a unique solution $\left(u_{n}, \rho_{n}\right)$ to

$$
d u_{n}(t)+\left(-\operatorname{div} a\left(\cdot, u_{n}, \nabla u_{n}\right)+\rho_{n}\right) d t=f_{n} d t+G\left(u_{n}\right) d W
$$

such that $u_{n} \geq \psi,-\rho_{n} \geq 0$ and $-\rho_{n} \leq h_{n}$

- weak convergence of ρ_{n} to ρ for $n \rightarrow \infty$ yield $-\rho \leq h^{-}$
- Passage to the limit in the equation: Prokhorov's and Skorokhod's theorem is needed. Pathwise uniqueness is available at the limit.

Thank you for your attention

