Well-posedness and Lewy-Stampaccia's inequalities for nonlinear stochastic evolution equations

Aleksandra Zimmermann (joint work with N. Sapountzoglou, Y. Tahraoui and G. Vallet)

Stochastic Models in Mechanics: Theoretical and Numerical Aspects

Marseille, August 31st, 2023

Obstacle problems

General form: $Au \geq f$, $u \geq \psi$ and $(Au - f, u - \psi)_{\mathcal{V}',\mathcal{V}} = 0$

- ▶ for elliptic PDE: Au = Au with $A: V \to V'$
- for parabolic PDE:

$$\mathcal{A}u = \partial_t u + Au$$

for stochastic PDE:

$$Au = \partial_t \left(u - \int_0^{\cdot} G(u) \, dW \right) + Au$$

Lewy-Stampaccia's inequality: $0 \le Au - f \le (f - A\psi)^-$

where $r^- = -\min(0, r)$ for all $r \in \mathbb{R}$

Obstacle problems in applications

Signorini type problems

Stefan type problems

Also: fluid flow in porous medium with a constraint on the pressure, Model with constraints for vehicular traffic jams....

A stochastic pseudomonotone parabolic obstacle problem

Let T>0, $D\subset\mathbb{R}^d$ a bounded Lipschitz domain, $(\Omega,\mathcal{F},(\mathcal{F}_t)_{t\geq 0},\mathbb{P})$ a stochastic basis with the usual assumptions, $\Omega_T:=\Omega\times(0,T)$. We study existence and uniqueness of solutions (u,ρ) to

$$\begin{aligned} \left(\mathbf{VI} \right) \begin{cases} du - \operatorname{div} a(u, \nabla u) \, dt + \rho \, dt &= f \, dt + G(u) \, dW(t) && \text{in } D \times \Omega_T, \\ u(t, 0) &= u_0 && \text{in } L^2(\Omega; L^2(D)) \\ u &= 0 && \text{in } \partial D \times \Omega_T \\ u &\geq \psi && \text{in } D \times \Omega_T \\ -\rho &\geq 0 \text{ and } \langle \rho, u - \psi \rangle &= 0 \end{aligned}$$

- u_0 is \mathcal{F}_0 -measurable, $u_0 \ge \psi(0)$
- ▶ $-\operatorname{div}\,a(v,\nabla v)$ is a pseudomonotone Leray-Lions operator from $W_0^{1,p}(D)$ to its dual space $W^{-1,p'}(D)$, $\max(1,\frac{2d}{d+2})$
- $f \in L^{p'}(\Omega_T; W^{-1,p'}(D))$ is predictable
- lacktriangledown ψ is an appropriate random obstacle function

Assumptions on the nonlinear operator

- $ightharpoonup a: D \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ is a Carathéodory function on $D \times \mathbb{R}^{d+1}$,
- ▶ a is monotone, *i.e.*, for a.e. $x \in D$, for all $\lambda \in \mathbb{R}$, $\xi, \eta \in \mathbb{R}^d$,

$$(a(x,\lambda,\xi) - a(x,\lambda,\eta)) \cdot (\xi - \eta) \ge 0$$

▶ There exist $\bar{\alpha} > 0$ and $C_1^a, C_2^a, \bar{\gamma} \geq 0$, $\bar{h} \in L^1(D)$, $\bar{k} \in L^{p'}(D)$, and an exponent q < p such that,

$$\begin{aligned} a(x,\lambda,\xi) \cdot \xi &\geq \bar{\alpha} |\xi|^p - \bar{\gamma} |\lambda|^q + \bar{h}(x) \\ |a(x,\lambda,\xi)| &\leq \bar{k}(x) + C_1^a |\lambda|^{p-1} + C_2^a |\xi|^{p-1}. \end{aligned}$$

for a.e. $x\in D$, for all $\lambda\in\mathbb{R}$ and for all $\xi\in\mathbb{R}^d$, There exists $C_3^a\geq 0$ and a non-negative function $l\in L^{p'}(D)$ such that

$$|a(x,\lambda_1,\xi) - a(x,\lambda_2,\xi)| \le (C_3^a|\xi|^{p-1} + l(x)) |\lambda_1 - \lambda_2|$$

for all λ_1 , $\lambda_2 \in \mathbb{R}$, for all $\xi \in \mathbb{R}^d$ and a.e. $x \in D$.

Well-known example:

$$-\operatorname{div} a(u, \nabla u) = -\operatorname{div} (|\nabla u|^{p-2}\nabla u + F(u)), p \ge 2$$

Q-Wiener Process

- Let $(\beta^k)_k$ be a sequence of independent $(\mathcal{F}_t)_{t\geq 0}$ -Brownian motions on $(\Omega,\mathcal{F},\mathbb{P})$, i.e., for any $k\in\mathbb{N}$,
 - $\beta^k = (\beta^k(t))_{t\geq 0}$ is a real-valued stochastic process with $\beta^k(0) = 0$
 - For all $t \geq 0$, $\omega \mapsto \beta^k(t)(\omega)$ is a \mathcal{F}_t -measurable random variable • For all $0 \leq s \leq t$, the increments $\beta^k(t) - \beta^k(s)$ are N(0, t - s) and
 - For all $0 \le s \le t$, the increments $\beta^k(t) \beta^k(s)$ are N(0,t-s) and independent of \mathcal{F}_s
- ▶ We fix a separable Hilbert space U such that $L^2(D) \subset U$ and a non-negative, symmetric trace class operator $Q: U \to U$ with

$$Q^{1/2}(U) = L^2(D)$$

▶ Let $(e_k)_k$ be an orthonormal basis of U made of eigenvectors of Q with corresponding eigenvalues $(\lambda_k)_k \subset [0, \infty)$.

Then,

$$W(t) := \sum_{k=1}^{\infty} \sqrt{\lambda_k} e_k \beta^k(t), \ t \ge 0$$

is a $(\mathcal{F}_t)_{t\geq 0}$ -adapted Q-Wiener process with values in U.

The Itô integral for a Q-Wiener process

A linear operator $A:L^2(D)\to L^2(D)$ is a Hilbert-Schmidt operator, i.e., $A\in \mathrm{HS}(L^2(D))$, iff

$$||A||_{\mathrm{HS}}^2 := \sum_{k=1}^{\infty} ||A(Q^{1/2}(e_k))||_{L^2(D)}^2 < \infty.$$

For a *predictable*, square-integrable process $\Phi: \Omega \times [0,T] \to \mathrm{HS}(L^2(D))$ and $t \in [0,T]$, the stochastic integral in the sense of Itô is given by

$$\int_0^t \Phi(s) dW = \sum_{k=1}^\infty \int_0^t \Phi(s)(\sqrt{\lambda_k} e_k) d\beta^k(s).$$

The Itô isometry holds true, i.e.,

$$\mathbb{E} \left\| \int_0^t \Phi(s) \, dW \right\|_{L^2(D)}^2 = \mathbb{E} \int_0^t \|\Phi(s)\|_{HS}^2 \, ds.$$

Assumptions on the noise

- $(W(t))_{t\geq 0}$ is a Q-Wiener process with respect to $(\mathcal{F}_t)_{t\geq 0}$
- Let $\mathrm{HS}(L^2(D))$ denote the space of Hilbert-Schmidt operators from $L^2(D)$ to $L^2(D)$
- ▶ The noise may be additive and multiplicative in the following sense: $G: \Omega_T \times L^2(D) \to \mathrm{HS}(L^2(D))$ is given by

$$G(\omega, t, u) = g(\omega, t) + \sigma(\omega, t, u)$$

with predictable mappings $g \in L^2(\Omega_T; HS(L^2(D)))$ and $\sigma: \Omega_T \times L^2(D) \to HS(L^2(D))$.

▶ Moreover, $\sigma(\omega, t, 0) = 0$ and

$$\|\sigma(\omega, t, u) - \sigma(\omega, t, v)\|_{HS} \le L\|u - v\|_{L^2(D)}$$

for a constant $L \geq 0$.

Assumptions on the obstacle

 $\psi \in L^p(\Omega_T; W^{1,p}_0(D)) \cap L^2(\Omega_T; L^2(D))$ is predictable with

$$\partial_t \left(\psi - \int_0^{\cdot} G(\psi) dW \right) \in L^{p'}(\Omega_T; W^{-1,p'}(D))$$

The equation

$$du - \operatorname{div} a(u, \nabla u) dt + \rho dt = f dt + G(u) dW(t)$$

ist coupled to the obstacle by

Ordered dual assumption: There exist nonnegative elements h^+ , h^- of $L^{p'}(\Omega_T;W^{-1,p'}(D))$ such that

$$f - \partial_t \left(\psi - \int_0^{\cdot} G(\psi) dW \right) + \operatorname{div} a(\psi, \nabla \psi) = h^+ - h^-$$

the ordered dual assumption provides additional regularity on ρ and well-posedness for Lewy-Stampaccia's inequality

Notion of solution

$$(u, \rho)$$
 is a solution to Problem (**VI**) iff:

- $u \in L^2(\Omega; C([0,T]; L^2(D)))$ is a predictable process
- $u \in L^p(\Omega_T; W_0^{1,p}(D)), u(0,\cdot) = u_0$
- $u > \psi$
- $\rho \in L^{p'}(\Omega_T; W^{-1,p'}(D))$ with $-\rho \geq 0$ and

$$\mathbb{E}\left[\int_0^T \langle \rho, u - \psi \rangle \, dt\right] = 0$$

▶ For all $t \in [0,T]$, \mathbb{P} -a.s. in Ω we have

$$u(t) - u_0 + \int_0^t -\operatorname{div} \, a(u, \nabla u) + \rho \, ds = \int_0^t f \, ds + \int_0^t G(u) \, dW$$

Lewy-Stampaccia's inequality

With the ordered dual assumption, a solution (u,ρ) to the variational inequality

$$du - \operatorname{div} a(u, \nabla u) dt + \rho dt = f dt + G(u) dW(t), \ u \ge \psi, \ -\rho \ge 0$$

satisfies Lewy-Stampacchia's inequality iff

$$\partial_t \left(u - \int_0^{\cdot} G(u) dW \right) - \operatorname{div} a(u, \nabla u) - f$$

$$\leq \left(f - \partial_t \left(\psi - \int_0^{\cdot} G(\psi) dW \right) + \operatorname{div} a(\psi, \nabla \psi) \right)^- = h^-$$

Main result

Theorem [STVZ; 2023]: There exists a unique solution (u, ρ) to **(VI)**. Moreover, (u, ρ) satisfies Lewy-Stampacchia's inequality

$$\partial_t \left(u - \int_0^{\cdot} G(u) dW \right) - \operatorname{div} a(u, \nabla u) - f \leq h^{-1}$$

Penalisation

For $\varepsilon > 0$, we consider the approximation

$$\partial_t \left(u_{\varepsilon} - \int_0^{\cdot} \widetilde{G}(u_{\varepsilon}) dW \right) - \operatorname{div} \widetilde{a}(u_{\varepsilon}, \nabla u_{\varepsilon}) - \frac{1}{\varepsilon} (u_{\varepsilon} - \psi)^- = f \quad (P_{\varepsilon})$$

where

- $\widetilde{G}(u_{\varepsilon}) = G(\omega, t, \max(\psi, u_{\varepsilon})) = g(\omega, t) + \sigma(\omega, t, \max(\psi, u_{\varepsilon}))$
- $\widetilde{a}(u_{\varepsilon}, \nabla u_{\varepsilon}) = a(x, \max(\psi, u_{\varepsilon}), \nabla u_{\varepsilon})$
- $(u_{\varepsilon} \psi)^{-} = -\min(u_{\varepsilon} \psi, 0)$

Existence and uniqueness of solutions u_{ε} to (P_{ε}) have to be provided.

A higher-order singular perturbation

- Let $\nu>\max\{p,2,2p(p-1)\}$ and $m\in\mathbb{N}$ be such that $H_0^m(D)$ has a continuous injection into $W_0^{1,2p}(D)\cap L^\infty(D)$
- $lackbox{ }\partial J:W^{m,\nu}_0(D)\to W^{-m,\nu'}(D)$ is defined by

$$\langle \partial J(u), v \rangle = \sum_{|\alpha| \le m} \int_D (1 + |D^{\alpha}u|^{\nu-2}) D^{\alpha}u D^{\alpha}v \, dx$$

Proposition [STVZ; 2023]: For $\varepsilon>0,\ \delta>0$ there exists a unique solution u_{ε}^{δ} to

$$\begin{split} du_{\varepsilon}^{\delta} + \left(\delta \partial J(u_{\varepsilon}^{\delta}) - \operatorname{div} \ \widetilde{a}(u_{\varepsilon}^{\delta}, \nabla u_{\varepsilon}^{\delta}) - \frac{1}{\varepsilon} \left(u_{\varepsilon}^{\delta} - \psi \right)^{-} \right) \, dt \\ = f \, dt + \widetilde{G}(u_{\varepsilon}^{\delta}) \, dW. \end{split}$$

Proof: The conditions (H1), (H2'), (H3) and (H4') of [Liu, Röckner; 2015, Section 5.1] are satisfied with $\beta=0$ and $\alpha=\nu$

Compactness with respect to the parameter $\delta > 0$

For fixed $\varepsilon > 0$, the laws

$$\mu_{\varepsilon}^{\delta} = \mathcal{L}(u_{\varepsilon}^{\delta}, \widetilde{G}(u_{\varepsilon}^{\delta}), \psi, G(0), \sigma, W, f, u_{0})$$

are tight. Prokhorov's theorem yields

$$\mu_{\varepsilon}^{\delta} \xrightarrow{*} \mu_{\infty}$$

up to a subsequence for $\delta \to 0^+$. Skorokhod's theorem yields the existence of random variables

$$(\overline{u}_{\varepsilon}^{\delta}, \widetilde{\overline{G}}(\overline{u}_{\varepsilon}^{\delta}), \overline{\psi}, \overline{G}_0, \overline{\sigma}, \overline{W}, \overline{f}, \overline{u_0})$$

on a new probability space $(\overline{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}})$ such that

$$d\overline{u}_{\varepsilon}^{\delta} + \left(\delta\partial J(\overline{u}_{\varepsilon}^{\delta}) - \operatorname{div}\ \widetilde{a}(\overline{u}_{\varepsilon}^{\delta}, \nabla \overline{u}_{\varepsilon}^{\delta}) - \frac{1}{\varepsilon}(\overline{u}_{\varepsilon}^{\delta} - \overline{\psi})^{-}\right) dt$$
$$= \overline{f} dt + \widetilde{G}(\overline{u}_{\varepsilon}^{\delta}) d\overline{W}$$

and $\overline{u}^\delta_\varepsilon$ converges to a random variable $\overline{u}^\infty_\varepsilon$ a.s. in $\overline{\Omega}$ for $\delta\to 0^+$

For $\varepsilon > 0$ fixed

▶ We use the $\overline{\mathbb{P}}$ -a.s. convergence of $\overline{u}_{\varepsilon}^{\delta}$ to a random variable $\overline{u}_{\varepsilon}^{\infty}$ in $\overline{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$d\overline{u}_{\varepsilon}^{\infty} + \left(A^{\infty} - \frac{1}{\varepsilon}(\overline{u}_{\varepsilon}^{\infty} - \overline{\psi})^{-}\right) dt = \overline{f} dt + \widetilde{\overline{G}}(\overline{u}_{\varepsilon}^{\infty}) d\overline{W}$$

For $\varepsilon > 0$ fixed

▶ We use the $\overline{\mathbb{P}}$ -a.s. convergence of $\overline{u}_{\varepsilon}^{\delta}$ to a random variable $\overline{u}_{\varepsilon}^{\infty}$ in $\overline{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$d\overline{u}_{\varepsilon}^{\infty} + \left(A^{\infty} - \frac{1}{\varepsilon}(\overline{u}_{\varepsilon}^{\infty} - \overline{\psi})^{-}\right) dt = \overline{f} dt + \widetilde{\overline{G}}(\overline{u}_{\varepsilon}^{\infty}) d\overline{W}$$

► From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$A^{\infty} = -\operatorname{div} \ \widetilde{a}(\overline{u}_{\varepsilon}^{\infty}, \nabla \overline{u}_{\varepsilon}^{\infty})$$

For $\varepsilon > 0$ fixed

▶ We use the $\overline{\mathbb{P}}$ -a.s. convergence of $\overline{u}_{\varepsilon}^{\delta}$ to a random variable $\overline{u}_{\varepsilon}^{\infty}$ in $\overline{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$d\overline{u}_{\varepsilon}^{\infty} - (\operatorname{div}\,\widetilde{a}(\overline{u}_{\varepsilon}^{\infty}, \nabla \overline{u}_{\varepsilon}^{\infty}) + \frac{1}{\varepsilon}(\overline{u}_{\varepsilon}^{\infty} - \overline{\psi})^{-})\,dt = \overline{f}\,dt + \widetilde{\overline{G}}(\overline{u}_{\varepsilon}^{\infty})\,d\overline{W}$$

► From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$A^{\infty} = -\operatorname{div} \ \widetilde{a}(\overline{u}_{\varepsilon}^{\infty}, \nabla \overline{u}_{\varepsilon}^{\infty})$$

For $\varepsilon > 0$ fixed

▶ We use the $\overline{\mathbb{P}}$ -a.s. convergence of $\overline{u}_{\varepsilon}^{\delta}$ to a random variable $\overline{u}_{\varepsilon}^{\infty}$ in $\overline{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$d\overline{u}_{\varepsilon}^{\infty} - (\operatorname{div} \widetilde{a}(\overline{u}_{\varepsilon}^{\infty}, \nabla \overline{u}_{\varepsilon}^{\infty}) + \frac{1}{\varepsilon} (\overline{u}_{\varepsilon}^{\infty} - \overline{\psi})^{-}) dt = \overline{f} dt + \widetilde{\overline{G}}(\overline{u}_{\varepsilon}^{\infty}) d\overline{W}$$

► From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$A^{\infty} = -\operatorname{div} \ \widetilde{a}(\overline{u}_{\varepsilon}^{\infty}, \nabla \overline{u}_{\varepsilon}^{\infty})$$

An L^1 -contraction principle yields pathwise uniqueness of solutions. Then, [Gyöngy, Krylov; 1996 Lemma 1.1] yields the convergence in probability (up to a subsequence) of $(u_{\varepsilon}^{\delta})_{\delta}$ towards an element u_{ε}

For $\varepsilon > 0$ fixed

• We use the $\overline{\mathbb{P}}$ -a.s. convergence of $\overline{u}_{\varepsilon}^{\delta}$ to a random variable $\overline{u}_{\varepsilon}^{\infty}$ in $\overline{\Omega}$ given by Skorohkod's theorem, Vitali's theorem, and weak convergence results from the a-priori estimates to arrive at

$$du_{\varepsilon} + \left(-\operatorname{div} \widetilde{a}(u_{\varepsilon}, \nabla u_{\varepsilon}) - \frac{1}{\varepsilon}(u_{\varepsilon} - \psi)^{-}\right) dt = f dt + \widetilde{G}(u_{\varepsilon}) dW$$

► From an energy inequality with respect to a weighted exponential norm and a stochastic version of Minty's trick adapted from [Roubiček; 2005, Lemma 8.8] we get

$$A^{\infty} = -\operatorname{div} \, \widetilde{a}(\overline{u}_{\varepsilon}^{\infty}, \nabla \overline{u}_{\varepsilon}^{\infty})$$

▶ An L^1 -contraction principle yields pathwise uniqueness of solutions. Then, [Gyöngy, Krylov; 1996 Lemma 1.1] yields the convergence in probability (up to a subsequence) of $(u_\varepsilon^\delta)_\delta$ towards an element u_ε

The variational inequality in the regular case

$$du_{\varepsilon} + \left(-\operatorname{div} \widetilde{a}(u_{\varepsilon}, \nabla u_{\varepsilon}) - \frac{1}{\varepsilon}(u_{\varepsilon} - \psi)^{-}\right) dt = f dt + \widetilde{G}(u_{\varepsilon}) dW$$

Ordered dual assumption with regularity: $h^-\in L^\alpha(\Omega_T;L^\alpha(D))$ for $\alpha=\max(2,p')$ and

$$f - \partial_t \left(\psi - \int_0^{\cdot} G(\psi) dW \right) + \text{div } a(\psi, \nabla \psi) = h^+ - \frac{h^-}{h^-}$$

- ► Thanks to the penalisation term $-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^{-}$, the sequence $(u_{\varepsilon})_{\varepsilon>0}$ is nondecreasing for $\varepsilon\to0^{+}$,
- ► Thanks to the regularity of h^- , $-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^-$ is bounded in $L^{\alpha}(\Omega_T; L^{\alpha}(D))$ and $(u_{\varepsilon}-\psi)^- \to 0$ in $L^2(\Omega_T; L^2(D))$
- ▶ For $u := \sup_{\varepsilon > 0} u_{\varepsilon}$, $\rho := \text{weak-} \lim_{\varepsilon \to 0^+} -\frac{1}{\varepsilon} (u_{\varepsilon} \psi)^-$ we have

$$u \geq \psi, \ -
ho \geq 0 \ {
m and} \ \mathbb{E}\left[\int_0^T \int_D
ho(u-\psi) \, dx \, dt = 0
ight]$$

The variational inequality in the regular case

$$du + (-\operatorname{div} \widetilde{a}(u, \nabla u) + \rho) \ dt = f \ dt + \widetilde{G}(u) \ dW$$

Ordered dual assumption with regularity: $h^-\in L^\alpha(\Omega_T;L^\alpha(D))$ for $\alpha=\max(2,p')$ and

$$f - \partial_t \left(\psi - \int_0^{\cdot} G(\psi) dW \right) + \text{div } a(\psi, \nabla \psi) = h^+ - h^-$$

- ▶ Thanks to the penalisation term $-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^{-}$, the sequence $(u_{\varepsilon})_{\varepsilon\geq0}$ is nondecreasing for $\varepsilon\to0^{+}$,
- ► Thanks to the regularity of h^- , $-\frac{1}{\varepsilon}(u_\varepsilon \psi)^-$ is bounded in $L^\alpha(\Omega_T; L^\alpha(D))$ and $(u_\varepsilon \psi)^- \to 0$ in $L^2(\Omega_T; L^2(D))$
- ▶ For $u := \sup_{\varepsilon > 0} u_{\varepsilon}$, $\rho := \text{weak-} \lim_{\varepsilon \to 0^+} -\frac{1}{\varepsilon} (u_{\varepsilon} \psi)^-$ we have

$$u \geq \psi, \ -\rho \geq 0 \ {
m and} \ \mathbb{E}\left[\int_0^T \int_D
ho(u-\psi) \, dx \, dt = 0
ight]$$

The variational inequality in the regular case

$$du + (-\operatorname{div} a(u, \nabla u) + \rho) \ dt = f \ dt + G(u) \ dW$$

Ordered dual assumption with regularity: $h^- \in L^\alpha(\Omega_T; L^\alpha(D))$ for $\alpha = \max(2,p')$ and

$$f - \partial_t \left(\psi - \int_0^{\cdot} G(\psi) dW \right) + \text{div } a(\psi, \nabla \psi) = h^+ - h^-$$

- ▶ Thanks to the penalisation term $-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^{-}$, the sequence $(u_{\varepsilon})_{\varepsilon\geq0}$ is nondecreasing for $\varepsilon\to0^{+}$,
- ► Thanks to the regularity of h^- , $-\frac{1}{\varepsilon}(u_\varepsilon \psi)^-$ is bounded in $L^\alpha(\Omega_T; L^\alpha(D))$ and $(u_\varepsilon \psi)^- \to 0$ in $L^2(\Omega_T; L^2(D))$
- ▶ For $u := \sup_{\varepsilon > 0} u_{\varepsilon}$, $\rho := \text{weak- } \lim_{\varepsilon \to 0^+} -\frac{1}{\varepsilon} (u_{\varepsilon} \psi)^-$ we have

$$egin{aligned} oldsymbol{u} \geq oldsymbol{\psi}, \ -
ho \geq 0 \ ext{and} \ \mathbb{E}\left[\int_0^T \int_D
ho(u-\psi) \, dx \, dt = 0
ight] \end{aligned}$$

$$\boldsymbol{h}^- \in L^p(\Omega_T; W^{1,p}_0(D)) \cap L^\alpha(\Omega_T; L^\alpha(D)), \ \partial_t \boldsymbol{h}^- \in L^2(\Omega_T; L^2(D))$$

One has to prove:

$$-\rho \leq h^-$$

For $\varepsilon > 0$ it holds true that

$$-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^{-}=-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^{-}+h^{-}-h^{-}$$

$$\boldsymbol{h}^- \in L^p(\Omega_T; W^{1,p}_0(D)) \cap L^\alpha(\Omega_T; L^\alpha(D)), \ \partial_t \boldsymbol{h}^- \in L^2(\Omega_T; L^2(D))$$

One has to prove

$$-\rho \leq h^-$$

For $\varepsilon > 0$ it holds true that

$$-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^{-} \geq -\frac{1}{\varepsilon}(u_{\varepsilon}-\psi+\varepsilon h^{-})^{-}-h^{-}$$

$$h^- \in L^p(\Omega_T; W_0^{1,p}(D)) \cap L^\alpha(\Omega_T; L^\alpha(D)), \ \partial_t h^- \in L^2(\Omega_T; L^2(D))$$

One has to prove

$$-\rho \leq h^-$$

▶ For $\varepsilon > 0$ it holds true that

$$-\frac{1}{\varepsilon}(u_{\varepsilon} - \psi)^{-} \ge -\frac{1}{\varepsilon}(u_{\varepsilon} - \psi + \varepsilon h^{-})^{-} - h^{-}$$

▶ We write the SPDE for $(u_{\varepsilon} - \psi + \varepsilon h^{-})$

$$h^- \in L^p(\Omega_T; W_0^{1,p}(D)) \cap L^{\alpha}(\Omega_T; L^{\alpha}(D)), \ \partial_t h^- \in L^2(\Omega_T; L^2(D))$$

One has to prove

$$-\rho \leq h^-$$

▶ For $\varepsilon > 0$ it holds true that

$$-\frac{1}{\varepsilon}(u_{\varepsilon} - \psi)^{-} \ge -\frac{1}{\varepsilon}(u_{\varepsilon} - \psi + \varepsilon h^{-})^{-} - h^{-}$$

- We write the SPDE for $(u_{\varepsilon} \psi + \varepsilon h^{-})$
- ▶ We use Itô formula for a smooth approximation of $(r^-)^2$ to obtain the SPDE for $\|(u_\varepsilon \psi + \varepsilon {\color{red} h^-})^-\|_{L^2(D)}^2$

$$h^- \in L^p(\Omega_T; W_0^{1,p}(D)) \cap L^\alpha(\Omega_T; L^\alpha(D)), \ \partial_t h^- \in L^2(\Omega_T; L^2(D))$$

One has to prove

$$-\rho \leq h^-$$

▶ For $\varepsilon > 0$ it holds true that

$$-\frac{1}{\varepsilon}(u_{\varepsilon} - \psi)^{-} \ge -\frac{1}{\varepsilon}(u_{\varepsilon} - \psi + \varepsilon h^{-})^{-} - h^{-}$$

- We write the SPDE for $(u_{\varepsilon} \psi + \varepsilon h^{-})$
- ▶ We use Itô formula for a smooth approximation of $(r^-)^2$ to obtain the SPDE for $\|(u_\varepsilon \psi + \varepsilon h^-)^-\|_{L^2(D)}^2$
- ▶ For $\varepsilon \to 0^+$ then it follows that

$$-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi+\varepsilon {\color{red}h}^{-})^{-}\rightarrow 0 \text{ in } L^{2}(\Omega_{T};L^{2}(D))$$

$$h^- \in L^p(\Omega_T; W_0^{1,p}(D)) \cap L^\alpha(\Omega_T; L^\alpha(D)), \ \partial_t h^- \in L^2(\Omega_T; L^2(D))$$

One has to prove

$$-\rho \leq h^-$$

▶ For $\varepsilon > 0$ it holds true that

For $\varphi \geq 0$, $\varepsilon > 0$

$$\int_{D} -\frac{1}{\varepsilon} (u_{\varepsilon} - \psi)^{-} \varphi \, dx \ge \int_{D} (-\frac{1}{\varepsilon} (u_{\varepsilon} - \psi + \varepsilon h^{-})^{-} - h^{-}) \varphi \, dx$$

- ▶ We write the SPDE for $(u_{\varepsilon} \psi + \varepsilon h^{-})$
- ▶ We use Itô formula for a smooth approximation of $(r^-)^2$ to obtain the SPDE for $\|(u_\varepsilon \psi + \varepsilon h^-)^-\|_{L^2(D)}^2$
- ▶ For $\varepsilon \to 0^+$ then it follows that

$$-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi+\varepsilon h^{-})^{-}\to 0 \text{ in } L^{2}(\Omega_{T};L^{2}(D))$$

$$h^- \in L^p(\Omega_T; W_0^{1,p}(D)) \cap L^\alpha(\Omega_T; L^\alpha(D)), \ \partial_t h^- \in L^2(\Omega_T; L^2(D))$$

One has to prove

$$-\rho \leq h^-$$

▶ For $\varepsilon > 0$ it holds true that

For
$$\varphi \geq 0$$
, $\varepsilon \to 0^+$

$$\int_{D} \rho \varphi \, dx \ge \int_{D} -h^{-} \varphi \, dx$$

- ▶ We write the SPDE for $(u_{\varepsilon} \psi + \varepsilon h^{-})$
- ▶ We use Itô formula for a smooth approximation of $(r^-)^2$ to obtain the SPDE for $\|(u_\varepsilon \psi + \varepsilon h^-)^-\|_{L^2(D)}^2$
- ▶ For $\varepsilon \to 0^+$ then it follows that

$$-\frac{1}{\varepsilon}(u_{\varepsilon}-\psi+\varepsilon h^{-})^{-}\to 0 \text{ in } L^{2}(\Omega_{T};L^{2}(D))$$

General ordered dual assumption

$$h^{-} \in L^{p'}(\Omega_T; W^{-1,p'}(D))$$

▶ There exists an approximating sequence of regular, non-negative mappings (h_n) such that

$$h_n \xrightarrow{n \to \infty} h^- \text{ in } L^{p'}(\Omega_T; W^{-1,p'}(D))$$

▶ Associated with h_n , for $n \in \mathbb{N}$ we define

$$f_n = \partial_t \left(\psi - \int_0^{\cdot} G(\psi) dW \right) - \text{div } a(\cdot, \psi, \nabla \psi) + h^+ - h_n$$

- f_n converges to f in $L^{p'}(\Omega_T; W^{-1,p'}(D))$ for $n \to \infty$
- ▶ There exists a unique solution (u_n, ρ_n) to

$$du_n(t) + (-\operatorname{div} a(\cdot, u_n, \nabla u_n) + \rho_n) dt = f_n dt + G(u_n) dW$$

such that $u_n \geq \psi$, $-\rho_n \geq 0$ and $-\rho_n \leq h_n$

- weak convergence of ρ_n to ρ for $n \to \infty$ yield $-\rho \le h^-$
- ▶ Passage to the limit in the equation: Prokhorov's and Skorokhod's theorem is needed. Pathwise uniqueness is available at the limit.

Thank you for your attention