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Obstacle problems
General form: Au > f, u > and (Au — f,u — )y =0
» for elliptic PDE: Au = Au with

AV =YV
» for parabolic PDE:

Free set {u = v} Ao — ot A
u = O+ Au

» for stochastic PDE:

Au= 9, <u—/O'G(u)dW>+Au

Lewy-Stampaccia's inequality: 0 < Au — f < (f — Av)~ J

where 7~ = —min(0,r) for all r € R



Obstacle problems in applications

Signorini type problems

N
mermbrane

Ve -

(a) ’ ®) ©
Apply a force without plate with plate
on membrane (no obstacle) (obstacle)

Stefan type problems

Also: fluid flow in porous medium with a constraint on the pressure,
Model with constraints for vehicular traffic jams....



A stochastic pseudomonotone parabolic obstacle
problem

Let 7> 0, D C R? a bounded Lipschitz domain, (Q, F, (F;)i>0,P) a
stochastic basis with the usual assumptions, Qr := Q x (0,7). We study
existence and uniqueness of solutions (u, p) to

du — diva(u, Vu) dt + pdt = fdt + G(u) dW (t) in D X Qr,

u(t,0) = ug in L?(Q; L?(D))
(Vh)qu=0 in 0D x Qp
u > P in D x Qp

—p>0and (p,u—1v)=0

> wug is Fo-measurable, ug > 1(0)

» —div a(v, Vv) is a pseudomonotone Leray-Lions operator from
WyP (D) to its dual space W=7 (D), max(1, FL)<p< o

> fe LY (Qp; W% (D)) is predictable

> 1) is an appropriate random obstacle function



Assumptions on the nonlinear operator
» a:D xR xR?— R?%is a Carathéodory function on D x R4¢+1,

> a is monotone, i.e., fora.e. x € D, forall A\ € R, £, € RY,

(a(x7/\a§) - a(l‘, /\ﬂ?)) : (€ - T]) >0
> There exist @ > 0 and C¢,C¢,5 >0, h € LY(D), k € L* (D), and
an exponent g < p such that,
a(z, A, §) - ¢
la(z, A, €)]

fora.e. x € D, for all A € R and for all ¢ € R9, There exists C$ >0
and a non-negative function | € L? (D) such that

la(@, A1, €) = a(x, X2, )] < (G517 +1(2)) | A1 = Aol

algl” — 3|7 + h(x)

>
< k(z) + CRAP~! + ColglP.

for all A1, Ao € R, for all £ € R? and a.e. x € D.

',
™

Well-known example:
—diva(u, Vu) = —div (|[VulP2Vu + F(u)), p > 2



Q-Wiener Process

» Let (8%)x be a sequence of independent (F;);>o-Brownian motions
on (Q,F,P), i.e, forany k € N,

o (% = (B*(t))t>0 is a real-valued stochastic process with 8¥(0) = 0

e Forall t >0, ws B%(t)(w) is a F;-measurable random variable

e For all 0 < s < t, the increments 5*(t) — 8*(s) are N(0,¢ — s) and
independent of F;

» We fix a separable Hilbert space U such that L*(D) C U and a
non-negative, symmetric trace class operator Q) : U — U with

Q*(U) = L*(D)

> Let (eg)r be an orthonormal basis of U made of eigenvectors of @
with corresponding eigenvalues (Ag)x C [0, 00).

Then,
W(t) ==Y VArerB(t), t >0
k=1

is a (Fi)i>0-adapted Q-Wiener process with values in U.



The 1t6 integral for a Q-Wiener process

A linear operator A : L?(D) — L?(D) is a Hilbert-Schmidt operator, i.e.,
A € HS(L2(D)), iff

1Allfs == > 1 A@"? ()72 (py < oo
k=1

For a predictable, square-integrable process @ :  x [0,T] — HS(L?*(D))
and t € [0, T, the stochastic integral in the sense of Itd is given by

[ oaw =3 [ as)(/Aen) ds (o).
0 P

The It6 isometry holds true, i.e.,

/0 " (s) aw

“

2 t
—& [ 0(s) s ds.
L2(D) 0



Assumptions on the noise

v

(W(t))i>0 is a Q-Wiener process with respect to (F;)¢>0

Let HS(L?(D)) denote the space of Hilbert-Schmidt operators from
L?(D) to L*(D)

> The noise may be additive and multiplicative in the following sense:
G : Qr x L*(D) — HS(L?(D)) is given by

v

Gw,t,u) = g(w,t) + o(w,t,u)

with predictable mappings g € L?(Q; HS(L?(D))) and
o: Qr x L?(D) — HS(L?(D)).
Moreover, o(w,t,0) =0 and

v

lo(w,t,u) = o(w,t,v)|lus < Lllu—vl[L2(p)

for a constant L > 0.



Assumptions on the obstacle
Y € LP(Qp; Wy P(D)) N L2(Qr; L2(D)) is predictable with

o (v~ [ Gwaw) e v (@rw (D)
0
The equation
du — div a(u, Vu) dt + pdt = f dt + G(u) dW (t)
ist coupled to the obstacle by

Ordered dual assumption: There exist nonnegative elements h™, h™ of
L (Qp; W=12'(D)) such that

f—0 (w —~ /0 G(1) dW) + div a(eh, Vip) = bt — b~

o

the ordered dual assumption provides additional regularity on p and
well-posedness for Lewy-Stampaccia’s inequality



Notion of solution

(u, p) is a solution to Problem (VI) iff:
» u € L*(Q;C([0,T); L3(D))) is a predictable process
> u € LP(Qp; Wy P(D)), u(0,-) = ug
> u >
> pe LP (Qp; W12 (D)) with —p > 0 and

T
/ <p,u—w>dt] ~0
0

For all t € [0,T], P-a.s. in £ we have

E

v

t

u(t)—uo+/0 —diva(u,Vu)+pds=/O fd3—|—/0 G(u) dW




Lewy-Stampaccia’s inequality

With the ordered dual assumption, a solution (u, p) to the variational
inequality

du —div a(u, Vu) dt + pdt = fdt + G(u) dW (t), u> 1, —p >0

satisfies Lewy-Stampacchia’s inequality iff

t(u—/G dW) div a(u, Vu) — f

(f at< /G )+diva(w,vw)> =h~




Main result

Theorem [STVZ; 2023]: There exists a unique solution (u, p) to (VI).
Moreover, (u, p) satisfies Lewy-Stampacchia’s inequality

O (u — /0 G(u) dW) —div a(u, Vu) — f < h~




Penalisation

For € > 0, we consider the approximation

00 (ue = [ Gluaw) —aiv atue, Vo) - L - )" =1 (2

where
> G(u) = G(w, t, max(y, ue)) = g(w, t) + o(w, t, max(v, u.))
> a(ue, Vue) = alz, max(), ue ), Vue)
> (ue —1p)” = —min (ue —¢,0)

& Existence and uniqueness of solutions u. to (P.) have to be
provided.



A higher-order singular perturbation

> Let v > max{p,2,2p(p — 1)} and m € N be such that H]*(D) has
a continuous injection into W, **(D) N L>®(D)

> dJ : W (D) — W~ (D) is defined by

(0T (u),v) = Y / (14 |D%u|’~2)D*uDv dx

|a|]<m

Proposition [STVZ; 2023]: For € > 0, § > 0 there exists a unique

solution ug to

dul + (56J(ug) — div a(ul, Vul) — é (ug — 1/1)_> dt

= fdt + G(ul) dW.

Proof: The conditions (H1), (H2'), (H3) and (H4') of [Liu, Rdckner;
2015, Section 5.1] are satisfied with 3 =0 and a = v



Compactness with respect to the parameter 6 > 0

For fixed € > 0, the laws
nl = L(u, G(ul). v, G(0),0, W, f,un)
are tight. Prokhorov's theorem yields
e — fioo

up to a subsequence for § — 0%. Skorokhod's theorem yields the
existence of random variables

(ﬂf; é(ﬂg)a Ea 607 E) Wv ?a %)
on a new probability space (2, F,P) such that
dad + <5aJ(u§) — div a(@, vad) — %(ag - zp)—) dt
= Fdt + G(@) dW

and @S converges to a random variable 7 a.s. in Q for § — 0%



Passage to the limit for § — 0"

For £ > 0 fixed

> We use the P-a.s. convergence of @ to a random variable 7 in
given by Skorohkod's theorem, Vitali's theorem, and weak
convergence results from the a-priori estimates to arrive at

duZ® + (A°° - é(ag" —E)—) dt = Fdt + G(@>) dW




Passage to the limit for § — 0"

For £ > 0 fixed

» We use the P-a.s. convergence of @’ to a random variable 7> in Q
given by Skorohkod's theorem, Vitali's theorem, and weak
convergence results from the a-priori estimates to arrive at

du® + (A°° — é(ag" —E)—) dt = fdt +5(ﬂ§°)dW

» From an energy inequality with respect to a weighted exponential
norm and a stochastic version of Minty's trick adapted from
[Roubitek; 2005, Lemma 8.8] we get

A% = —div a(u®, Vud)



Passage to the limit for § — 0"

For ¢ > 0 fixed

» We use the P-a.s. convergence of @° to a random variable 7 in Q
given by Skorohkod's theorem, Vitali's theorem, and weak
convergence results from the a-priori estimates to arrive at

du® — (div a(a®, Va®) + %(ﬂg" — 1)) dt = fdt +5(ﬂ§°)dW J

» From an energy inequality with respect to a weighted exponential
norm and a stochastic version of Minty's trick adapted from
[Roubitek; 2005, Lemma 8.8] we get

A% = —div a(Tu, Vu)



Passage to the limit for § — 0"

For £ > 0 fixed

» We use the P-a.s. convergence of @’ to a random variable 7> in Q
given by Skorohkod's theorem, Vitali's theorem, and weak
convergence results from the a-priori estimates to arrive at

dug® — (div a(ug®, Vu®) + i(ﬂ?—@)_)dt:?dt—i—é(ﬂ?)dw

» From an energy inequality with respect to a weighted exponential
norm and a stochastic version of Minty's trick adapted from
[Roubigek; 2005, Lemma 8.8] we get

A = —div a(u2®, Vu)

» An L'-contraction principle yields pathwise uniqueness of solutions.
Then, [Gydngy, Krylov; 1996 Lemma 1. 1] yields the convergence in
probability (up to a subsequence) of (u2); towards an element w.



Passage to the limit for § — 0"

For € > 0 fixed

» We use the P-a.s. convergence of @ to a random variable 7 in
given by Skorohkod's theorem, Vitali's theorem, and weak
convergence results from the a-priori estimates to arrive at

1 _
du, + (—div a(ue, Vue) — g(u5 — U)_) dt = fdt + G(u.) dW J

» From an energy inequality with respect to a weighted exponential
norm and a stochastic version of Minty's trick adapted from
[Roubigek; 2005, Lemma 8.8] we get

A% = —div a(T, Vul)

» An L'-contraction principle yields pathwise uniqueness of solutions.
Then, [Gydngy, Krylov; 1996 Lemma 1.1] yields the convergence in
probability (up to a subsequence) of (u?); towards an element w.



The variational inequality in the regular case

due + <_ div a(ue, Vue) — é(us - 1/’)) dt = fdt + é(UE) aw J

Ordered dual assumption with regularity: h~ € L*(Qp; L*(D)) for
a =max(2,p’) and

f=0 (?ﬁ - /0 G() dW) +div a(y, Vi) = ht — h™

» Thanks to the penalisation term f%(ue — )™, the sequence

(ue)e>0 is nondecreasing for e — 07,
> Thanks to the regularity of 4=, —2(u. — 1))~ is bounded in
Le(Qq; LY(D)) and (ue —¥)~ — 0 in L?(Qp; L3(D))

> For w:=sup,oques, p:=weak- lim. ,o+ —%(ue — 1)~ we have

T
u >, —p>0andEl/ /p(u—ib)dxdtzO]
o Jp



The variational inequality in the regular case

du + (=diva(u, Vu) + p) dt = f dt + G(u) dW

Ordered dual assumption with regularity: h= € L*(Qp; L*(D)) for
a =max(2,p’) and

f—o (@b - /0 G(¥) dW) +div a(eh, Vip) = BT — b~

> Thanks to the penalisation term —2(u. — 1))~, the sequence
(ue)e>0 is nondecreasing for e — 07,

> Thanks to the regularity of A=, —%(u. — 1)~ is bounded in
L*(Q7; L%(D)) and (ue — )~ — 0in L?(Qp; L?(D))

> For u:=sup. gue, p:=weak- lim._,o+ —%(ue — 1))~ we have

T
u >, pZOandEl/ /p(uw)dxdtO]
o Jp



The variational inequality in the regular case

du + (—diva(u, Vu) + p) dt = fdt + G(u) dW

Ordered dual assumption with regularity: h~ € L*(Qp; L*(D)) for
a =max(2,p’) and

f—o (@b - /0 G(¥) dW) +div a(e, Vip) = bt — b~

> Thanks to the penalisation term —2(u. — 1))~, the sequence

(ue)e>0 is nondecreasing for e — 07,
> Thanks to the regularity of A=, —%(u. — 1)~ is bounded in
L*(Q7; L%(D)) and (ue — )~ — 0in L?(Qp; L?(D))

> For u:=sup.ogue, p:=weak- lim._,o+ —%(ue — 1))~ we have

T
u >, pZOandEl/ /p(uw)dxdtO]
o Jp



Lewy-Stampaccia’s inequalities in the regular case

h~ € LP(Qp; Wy (D)) N LY (Qp; L(D)), d,;h~ € L*(Qr; L*(D)) J

One has to prove:
—p<h"

» For ¢ > 0 it holds true that




Lewy-Stampaccia’s inequalities in the regular case

h~ € LP(Qp; Wy (D)) N LY (Qp; L(D)), d,;h~ € L*(Qr; L*(D)) J

One has to prove
—p<h"

» For ¢ > 0 it holds true that

M | =

1 _ —e _
—g(ue—w) >— =(ue—%+eh™ )" —h J




Lewy-Stampaccia’s inequalities in the regular case

h~ € LP(Qp; Wy (D)) N LY (Qp; L(D)), d,;h~ € L*(Qr; L*(D)) J

One has to prove
—p<h"

» For ¢ > 0 it holds true that

» We write the SPDE for (u. — ¢ +¢eh™)



Lewy-Stampaccia’s inequalities in the regular case

h~ € LP(Qp; Wy (D)) N LY (Qp; L(D)), 9,;h~ € L*(Qr; L*(D)) J

One has to prove
—p<h"

» For € > 0 it holds true that

M | =

1 _ N _
—S(ue =)=~ Z(uc—y+ehT) —h J

» We write the SPDE for (u, — ¢ +¢h™)

» We use It formula for a smooth approximation of (r~)? to obtain
the SPDE for [|(ue — 1 +eh™) ™ [|72(p)



Lewy-Stampaccia’s inequalities in the regular case

h™ € LY(Qr; Wo (D)) N L*(Qr; L%(D)), &b~ € L*(Qr; L*(D)) |

One has to prove
—p<h"

v

For € > 0 it holds true that

M | =

1 _ —e _
—E(us—d}) >— —(ue—%+eh™)" —h J

v

We write the SPDE for (u. — ¢ +¢h™)

We use It formula for a smooth approximation of (r~)? to obtain
the SPDE for [|(ue — 1 +eh™) ™ [|7(p)

For ¢ — 01 then it follows that

v

v

—%(us —+eh™)” = 0in L*(Qp; L*(D))



Lewy-Stampaccia’s inequalities in the regular case

h~ € LP(Qr; Wy (D)) N LY (Qr; L(D)), d:h~ € L*(Qr; L*(D)) J

One has to prove
—p<h”

» For € > 0 it holds true that

For o >0,e>0

| = 2= pde> [ (L= +eh)T —h)pde

» We write the SPDE for (u. — ¢ +eh™)

» We use It6 formula for a smooth approximation of (r~)? to obtain
the SPDE for [|(ue — 9 +¢eh™)~[|72(p)

» For ¢ — 07 then it follows that

—é(ug —+eh™)” = 0in L*(Qp; L*(D))



Lewy-Stampaccia’s inequalities in the regular case

h~ € LP(Qp; Wy (D)) N LY (Qp; L(D)), 8:h~ € L*(Qr; L*(D)) J

One has to prove
—p<h”

» For € > 0 it holds true that

/p(pdch/ —h"pdx
D D

» We write the SPDE for (u. — ¢ + eh™)

» We use It formula for a smooth approximation of (r~)? to obtain
the SPDE for [|(uc — 9 +¢eh™) ™ [|72(p)

» For ¢ — 01 then it follows that

For ¢ >0,¢ — 0"

—é(ug —+eh™)” = 0in L*(Qp; L*(D))



General ordered dual assumption

h~ e L (Qp; W17 (D))

» There exists an approximating sequence of regular, non-negative
mappings (h,) such that

/

b 222 1 in L' (Qp; W' (D))

» Associated with h,,, for n € N we define
fu=0i (v~ [ Goyaw) - div o,0.99) + 1 < b,
0

> f, converges to f in L¥ (Qp; W12 (D)) for n — oo
> There exists a unique solution (uy,, p,) to

duy () + (= div a(-, upn, V) + pn) dt = frdt + G(uy,) dW

such that u, > ¢, —p, >0 and —p,, < h,
» weak convergence of p, to p for n — oo yield —p < h™

> Passage to the limit in the equation: Prokhorov’s and Skorokhod's
theorem is needed. Pathwise uniqueness is available at the limit.



Thank you for your attention



