On the asymptotic behaviors of solutions to stochastic obstacle problems Large deviations \& invariant measures

Yassine Tahraoui

Stochastic models in mechanics: theoretical and numerical aspects
Laboratoire de Mécanique \& d'Acoustique, Marseille
August 31, 2023

Obstacle problems

$$
\begin{aligned}
& \partial I_{K}(u) \ni \\
& f-\partial_{t}\left(u-\int_{0} G(u, \cdot) d W\right)-A(u, \cdot), \\
& \quad K: \text { convex in some B-space }
\end{aligned}
$$

$$
\begin{aligned}
& 0=\partial_{t}\left(u-\int_{0} G(u, \cdot) d W\right)+A(u, \cdot)-f \\
& \text { on }\{u>\psi\} \\
& k=\partial_{t}\left(u-\int_{0} G(u, \cdot) d W\right)+A(u, \cdot)-f \\
& \text { on }\{u=\psi\} .
\end{aligned}
$$

$\stackrel{(i)}{\rightsquigarrow}$ Formulations? Exist.+ Uniq.?
$\stackrel{(i i)}{\rightsquigarrow}$ Lewy-Stampacchia inequalities?

$$
0 \leq-k \leq h^{-}
$$

More on the dynamics??

- Rare events/ small noise LDP:
\rightsquigarrow How the stochastic perturbations effects the dynamics? $\left(u_{\delta}\right)_{\delta \downarrow 0}$?

$$
\partial I_{K}\left(u_{\delta}\right) \ni f-\partial_{t}\left(u_{\delta}-\delta \int_{0} G\left(u_{\delta}, \cdot\right) d W\right)-A\left(u_{\delta}, \cdot\right) ; \quad \delta>0, t \geq 0
$$

- Invariant measures \& Ergodicity?
\rightsquigarrow Markov semigroup properties? $t \rightarrow+\infty$?

$$
\begin{equation*}
\partial I_{K}(u) \ni f-\partial_{t}\left(u-\int_{0} G(u) d W\right)-A(u) \tag{1}
\end{equation*}
$$

- Rare events/ small noise LDP:
\rightsquigarrow How the stochastic perturbations effects the dynamics? $\left(u_{\delta}\right)_{\delta \downarrow 0}$?

$$
\partial I_{K}\left(u_{\delta}\right) \ni f-\partial_{t}\left(u_{\delta}-\delta \int_{0} G\left(u_{\delta}, \cdot\right) d W\right)-A\left(u_{\delta}, \cdot\right) ; \quad \delta>0, t \geq 0
$$

- Invariant measures \& Ergodicity?
\rightsquigarrow Markov semigroup properties? $t \rightarrow+\infty$?

$$
\begin{equation*}
\partial I_{K}(u) \ni f-\partial_{t}\left(u-\int_{0} G(u) d W\right)-A(u) \tag{1}
\end{equation*}
$$

Singularities caused by the obstacle? $\nVdash \leadsto$ Lewy-Stampacchia inequality

Large deviations

$\left(X_{t}^{\delta}\right)^{\prime}=b\left(X_{t}^{\delta}\right)+\delta \psi_{t}, \quad X_{t}^{\delta}(0)=x_{0} \longleftrightarrow \rightsquigarrow \rightarrow\left(x_{t}\right)^{\prime}=b\left(x_{t}\right), \quad x_{t}(0)=x_{0}$
Let $D \subset \mathbb{R}^{d}$ where $x_{0} \in D$.
$x_{t} \in D$ for any $t \geq 0$ and attracted to equilibrium position x_{*} as $t \rightarrow \infty$.
\rightsquigarrow Does X_{t}^{δ} have the same property with $P \approx 1$?

Large deviations

$$
\left(X_{t}^{\delta}\right)^{\prime}=b\left(X_{t}^{\delta}\right)+\delta \psi_{t}, \quad X_{t}^{\delta}(0)=x_{0} \text { ons }\left(x_{t}\right)^{\prime}=b\left(x_{t}\right), \quad x_{t}(0)=x_{0}
$$

Let $D \subset \mathbb{R}^{d}$ where $x_{0} \in D$.
$x_{t} \in D$ for any $t \geq 0$ and attracted to equilibrium position x_{*} as $t \rightarrow \infty$.
\rightsquigarrow Does X_{t}^{δ} have the same property with $P \approx 1$?
$\rightsquigarrow P\left(\sup _{t \in[0, \infty]}\left|\psi_{t}\right|<\infty\right)=0 \rightarrow I=\left[0, \infty\left[=\cup_{k} I_{T}^{k}=\cup_{k}[k T,(k+1) T]\right.\right.$
$\rightsquigarrow \sup \left|X_{t}^{\delta}-x_{t}\right| \leq \delta, \quad \delta \ll 1$
$t \in I_{T}^{k}$
$\rightarrow P\left(X_{t}^{\delta} \notin D\right.$ for some $\left.t \in[k T,(k+1) T]\right) \approx \delta$
\rightarrow The behaviour of X_{t}^{δ} on I_{T}^{k} are independent $\Longrightarrow X_{t}^{\delta} \notin D$.
\rightarrow The first time exit $\tau^{\delta} \sim \operatorname{Exp}(\lambda)$ with

$$
\lambda=\frac{1}{T} P\left(X_{t}^{\delta} \text { exists from } D \text { for } t \in I_{T}^{k}\right)
$$

X_{t}^{δ} exists D with $P \approx \delta \nsim$ the probability of improbable events $t \nearrow+\infty$?
\rightarrow The behaviour of X_{t}^{δ} on I_{T}^{k} are independent $\Longrightarrow X_{t}^{\delta} \notin D$.
\rightarrow The first time exit $\tau^{\delta} \sim \operatorname{Exp}(\lambda)$ with

$$
\lambda=\frac{1}{T} P\left(X_{t}^{\delta} \text { exists from } D \text { for } t \in I_{T}^{k}\right)
$$

X_{t}^{δ} exists D with $P \approx \delta \nsim$ the probability of improbable events $t \nearrow+\infty$?

- Gaussian perturbations $u \rightarrow$ asymptotics of the form $\exp \left(\frac{-c}{\delta^{2}}\right), \delta \downarrow 0$

$$
\begin{aligned}
P\left(d\left(X_{t}^{\delta}, \varphi\right)<\delta\right) & \approx \exp \left(\frac{-1}{\delta^{2}} S(\varphi)\right)
\end{aligned} \text { for } \delta, \delta \ll 1 .
$$

S : rate function $\nVdash \nrightarrow$ Entropy in statistical mechanics.

Definitions

Let E be a Polish space with the Borel σ-field $\mathcal{B}(E)$.

Definition

A function I: $E \rightarrow[0, \infty]$ is called a rate function on E if for each $M<\infty$ the level set $\{x \in E: I(x) \leq M\}$ is a compact.

Definition

A family $\left\{X^{\delta}\right\}_{\delta}$ of E-valued random elements is said to satisfy a large deviation principle with rate function / if for each $G \in \mathcal{B}(E)$

$$
\begin{aligned}
-\inf _{x \in G^{0}} I(x) \leq \liminf _{\delta \rightarrow 0} \delta^{2} \log P\left(X^{\delta} \in G\right) & \leq \limsup _{\delta \rightarrow 0} \delta^{2} \log P\left(X^{\delta} \in G\right) \\
& \leq-\inf _{x \in \bar{G}} I(x)
\end{aligned}
$$

where G^{0} and \bar{G} are respectively the interior and the closure of G in E.

LDP / infinite dimensional setting

- The variational representation for functionals of Wiener process and LDP \rightsquigarrow A.Budhiraja and P.Dupuis 20':

LDP and the Laplace principle, weak cv method.

- Sufficient condition to prove LDP: Matoussi, Sabbagh and Zhang 21' \rightsquigarrow Reflected measure, penalization, weak cv.
\rightsquigarrow Quasilinear obstacle problems!

Notations

For $N \in \mathbb{N}$:

$$
\begin{gathered}
S_{N}=\left\{\phi \in L^{2}\left([0, T] ; H_{0}\right) ; \quad \int_{0}^{T}\|\phi(s)\|_{H_{0}}^{2} d s \leq N\right\} \\
\mathcal{A}=\left\{v ; \quad v: \Omega_{T} \rightarrow H_{0}, \text { predictable } P\left(\int_{0}^{T}\|v(s)\|_{H_{0}}^{2} d s<\infty\right)=1\right\}, \\
\mathcal{A}_{N}=\left\{v \in \mathcal{A}: v(\omega) \in S_{N} \text { P-a.s. }\right\} .
\end{gathered}
$$

$\rightsquigarrow g^{\delta}, g^{0} ?$
Let $g^{\delta}: C([0, T], H) \rightarrow E$ be a measurable map such that $g^{\delta}(W(\cdot))=X^{\delta}$. Suppose that there exists a measurable map $g^{0}: C([0, T], H) \rightarrow E$ s.t.
(1) For every $N<\infty$, any family $\left\{v^{\delta}: \delta>0\right\} \subset \mathcal{A}_{N}$ and any $\epsilon>0$,

$$
\lim _{\delta \rightarrow 0} P\left(\rho\left(Y^{\delta}, Z^{\delta}\right)>\epsilon\right)=0
$$

where $Y^{\delta}=g^{\delta}\left(W(\cdot)+\frac{1}{\delta} \int_{0} v_{s}^{\delta} d s\right), Z^{\delta}=g^{0}\left(\int_{0}^{\cdot} v_{s}^{\delta} d s\right)$ and $\rho(\cdot, \cdot)$
stands for the metric in the space E.
(2) For every $N<\infty$ and any family $\left\{v^{\delta}: \delta>0\right\} \subset S_{N}$ satisfying that v_{δ} converges weakly to some element v as $\delta \rightarrow 0$,

$$
g^{0}\left(\int_{0} v_{s}^{\delta} d s\right) \rightarrow g^{0}\left(\int_{0} v_{s} d s\right) \text { in the space } E .
$$

LDP for obstacle problems (\mathcal{P})
$D \subset \mathbb{R}^{d}, T>0 ; V=W_{0}^{1, p}(D) ; H=L^{2}(D),\left(\Omega, \mathcal{F}, P ;\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$ is given.

$$
\begin{cases}d u_{\delta}+A\left(u_{\delta}, \cdot\right) d s+k_{\delta} d s=f d s+\delta G\left(\cdot, u_{\delta}\right) d W, \delta>0 & \text { in } D \times \Omega_{T}, \\ u_{\delta}(t=0)=u_{0} & \text { in } D, \\ u_{\delta} \geq \psi & \text { in } D \times \Omega_{T}, \\ u_{\delta}=0 & \text { on } \partial D \times \Omega_{T}, \\ \left\langle k_{\delta}, u_{\delta}-\psi\right\rangle_{V^{\prime}, V}=0 \text { and }-k_{\delta} \in\left(V^{\prime}\right)^{+} & \text {a.e. in } \Omega_{T} .\end{cases}
$$

$\exists!X_{\delta}:=\left(u_{\delta}, k_{\delta}\right)$. In particular, $\left\{X_{\delta}\right\}_{\delta}$ takes values in

$$
\left(C([0, T] ; H) \cap L^{P}(0, T ; V)\right) \times L^{p^{\prime}}\left(0, T ; V^{\prime}\right) \quad P-\text { a.s. }
$$

$\left(C([0, T] ; H) \cap L^{p}(0, T ; V),|\cdot|_{T}\right)$ is a Polish space with the following norm

$$
|f-g|_{T}=\sup _{t \in[0, T]}\|f-g\|_{H}+\left(\int_{0}^{T}\|f-g\|_{V}^{p} d s\right)^{1 / p} .
$$

\rightsquigarrow Y.Tahraoui and G. Vallet: Lewy-Stampacchia's inequality for a stochastic T-monotone obstacle problem, Stoch PDE: Anal Comp 10, 90-125 (2022).

Assumptions (LDP)

- $W(\cdot)$ is a $\left\{\mathcal{F}_{t}\right\}_{t \geq 0 \text {-adapted }} Q$-Wiener process in H.
- $\max \left(1, \frac{2 d}{d+2}\right)<p<+\infty$.
$H_{1}:$ Let $A: V \times[0, T] \rightarrow V^{\prime}, \quad G: H \times[0, T] \rightarrow L_{2}(\overbrace{H_{0}}^{Q^{1 / 2} H}, H)$.
H_{2} : A is T-monotone, coercive, hemicontinuous +growth.
$H_{3}: G$ is Lipschitz w.r.t. $u \in H$ and $\|G(0, \cdot)\|_{L_{2}\left(H_{0}, H\right)}^{2}<\infty$.
$\mathrm{H}_{4}: \psi \in L^{\infty}(0, T ; V), \frac{d \psi}{d t} \in L^{p^{\prime}}\left(0, T ; V^{\prime}\right)$ and $G(\psi, \cdot)=0$.

Assumptions (LDP)

- $W(\cdot)$ is a $\left\{\mathcal{F}_{t}\right\}_{t \geq 0 \text {-adapted }} Q$-Wiener process in H.
- $\max \left(1, \frac{2 d}{d+2}\right)<p<+\infty$.
$H_{1}:$ Let $A: V \times[0, T] \rightarrow V^{\prime}, \quad G: H \times[0, T] \rightarrow L_{2}(\overbrace{H_{0}}^{Q^{1 / 2} H}, H)$.
H_{2} : A is T-monotone, coercive, hemicontinuous +growth.
$H_{3}: G$ is Lipschitz w.r.t. $u \in H$ and $\|G(0, \cdot)\|_{L_{2}\left(H_{0}, H\right)}^{2}<\infty$.
$\mathrm{H}_{4}: \psi \in L^{\infty}(0, T ; V), \frac{d \psi}{d t} \in L^{p^{\prime}}\left(0, T ; V^{\prime}\right)$ and $G(\psi, \cdot)=0$. $\rightsquigarrow \max \left(1, \frac{2 d}{d+2}\right)<p<2$!
$H_{5}: f \in L^{\infty}\left(0, T ; V^{\prime}\right)$ s.t. $f-\partial_{t} \psi-A(\psi, \cdot) \in L^{p}(0, T ; V)^{*}$.
$H_{6}: u_{0} \in H$ satisfies the constraint, i.e. $u_{0} \geq \psi(0)$.

Main result

\checkmark the existence of a Borel-measurable map ${ }^{1}$

$$
g^{\delta}: C([0, T] ; H) \rightarrow C([0, T] ; H) \cap L^{p}(0, T ; V) ; u_{\delta}=g^{\delta}(W) \quad P-\text { a.s. }
$$

[^0] evolution equations in infinite dimensions. Condens. Matter Phys. 54, 247-259, 2008 를

Main result

\checkmark the existence of a Borel-measurable map ${ }^{1}$

$$
g^{\delta}: C([0, T] ; H) \rightarrow C([0, T] ; H) \cap L^{p}(0, T ; V) ; u_{\delta}=g^{\delta}(W) \quad P-\text { a.s. }
$$

$$
\rightarrow g^{0} ?: \text { Let } \phi \in L^{2}\left([0, T] ; H_{0}\right), \exists!\left(y^{\phi}, R^{\phi}\right) \text { s.t. }
$$

$$
\left\{\begin{array}{l}
\frac{d y^{\phi}}{d t}+A\left(y^{\phi}, \cdot\right)+R^{\phi}=f+G\left(\cdot, y^{\phi}\right) \phi \quad \text { in } V^{\prime}, y^{\phi}(0)=u_{0} \text { in } H, \\
y^{\phi} \geq \psi \text { a.e. in } D \times[0, T] \\
-R^{\phi} \in\left(V^{\prime}\right)^{+}:\left\langle R^{\phi}, y^{\phi}-\psi\right\rangle_{V^{\prime}, V}=0 \text { a.e. in }[0, T] .
\end{array}\right.
$$

"the skeleton equations"

[^1]
Definition

The pair $\left(y^{\phi}, R^{\phi}\right)$ is a solution to (2) if and only if:

- $\left(y^{\phi}, R^{\phi}\right) \in\left(L^{p}(0, T ; V) \cap C([0, T] ; H)\right) \times L^{p^{\prime}}\left(0, T ; V^{\prime}\right), y^{\phi}(0)=u_{0}$ and $y^{\phi} \geq \psi$.
- $-R^{\phi} \in\left(L^{p^{\prime}}\left(0, T ; V^{\prime}\right)\right)^{+}$and $\int_{0}^{T}\left\langle R^{\phi}, y^{\phi}-\psi\right\rangle d s=0$.
- For all $t \in[0, T]$,

$$
\begin{aligned}
\left(y^{\phi}(t), \Phi\right) & +\int_{0}^{t}\left\langle R^{\phi}, \Phi\right\rangle d s+\int_{0}^{t}\left\langle A\left(y^{\phi}, \cdot\right), \Phi\right\rangle d s \\
& =\left(u_{0}, \Phi\right)+\int_{0}^{t}\left(f+G\left(\cdot, y^{\phi}\right) \phi, \Phi\right) d s, \quad \forall \Phi \in V .
\end{aligned}
$$

Theorem

$\exists!\left(y^{\phi}, R^{\phi}\right)$ to (2). Moreover, the following L-S inequality holds:

$$
\begin{equation*}
0 \leq \frac{d y^{\phi}}{d s}+A\left(y^{\phi}, \cdot\right)-G\left(y^{\phi}, \cdot\right) \phi-f \leq h^{-}=\left(f-\partial_{t} \psi-A(\psi, \cdot)\right)^{-} \tag{3}
\end{equation*}
$$

Theorem

$\exists!\left(y^{\phi}, R^{\phi}\right)$ to (2). Moreover, the following L-S inequality holds:

$$
\begin{equation*}
0 \leq \frac{d y^{\phi}}{d s}+A\left(y^{\phi}, \cdot\right)-G\left(y^{\phi}, \cdot\right) \phi-f \leq h^{-}=\left(f-\partial_{t} \psi-A(\psi, \cdot)\right)^{-} \tag{3}
\end{equation*}
$$

\checkmark Define the measurable mapping g^{0} as follows

$$
\begin{align*}
g^{0}: C([0, T] ; H) & \rightarrow L^{P}(0, T ; V) \cap C([0, T] ; H) \\
\int_{0} \phi d s & \mapsto g^{0}\left(\int_{0} \phi d s\right):=y^{\phi} \quad \text { for } \phi \in L^{2}\left([0, T] ; H_{0}\right), \tag{4}
\end{align*}
$$

where $y^{\phi} \in L^{p}(0, T ; V) \cap C([0, T] ; H)$ is the unique solution of (2).

Result "LDP"

Theorem

Assume $H_{1}-H_{6}$ hold. Let $\left\{u^{\delta}\right\}_{\delta>0}$ be the unique solution of (\mathcal{P}). Then
(1) $\left\{u^{\delta}\right\}_{\delta}$ satisfies LDP on $C([0, T] ; H)$, as $\delta \downarrow 0$, with the rate function \mathbb{I}.
(2) If moreover H_{7} holds. Then $\left\{u^{\delta}\right\}_{\delta}$ satisfies LDP on $C([0, T] ; H) \cap L^{P}(0, T ; V)$, as $\delta \downarrow 0$, with the rate function \mathbb{I}.

$$
\mathbb{I}(y)=\inf _{\left\{\phi \in L^{2}\left([0, T], H_{0}\right)\right\}}\left\{\frac{1}{2} \int_{0}^{T}\|\phi(s)\|_{H_{0}}^{2} d s ; \quad y:=y^{\phi}=g^{0}\left(\int_{0} \phi d s\right)\right\} .
$$

$$
\begin{aligned}
H_{7}: \exists \lambda_{T} \in \mathbb{R}, & \exists \bar{\alpha}>0: \forall v_{1}, v_{2} \in V \\
& \left\langle A\left(v_{1}, \cdot\right)-A\left(v_{2}, \cdot\right), v_{1}-v_{2}\right\rangle \geq \bar{\alpha}\left\|v_{1}-v_{2}\right\|_{V}^{p}-\lambda_{T}\left\|v_{1}-v_{2}\right\|_{H}^{2} .
\end{aligned}
$$

Outline of the proof

a-The Skeleton equation

$$
\left\{\begin{array}{l}
\frac{d y^{\phi}}{d t}+A\left(y^{\phi}, \cdot\right)+R^{\phi}=f+G\left(\cdot, y^{\phi}\right) \phi \quad \text { in } V^{\prime}, y^{\phi}(0)=u_{0} \text { in } H, \\
y^{\phi} \geq \psi \text { a.e. in } D \times[0, T], \\
-R^{\phi} \in\left(V^{\prime}\right)^{+}:\left\langle R^{\phi}, y^{\phi}-\psi\right\rangle V^{\prime}, V=0 \text { a.e. in }[0, T] .
\end{array}\right.
$$

- Uniqueness $\rightsquigarrow \leadsto$ monotonicity+ Lipschitz multiplicative noise.
- Existence \& L-S inequalities: Regular data \rightarrow general data \checkmark Talk by Guy Vallet at 14:00

Outline of the proof

a-The Skeleton equation

$$
\left\{\begin{array}{l}
\frac{d y^{\phi}}{d t}+A\left(y^{\phi}, \cdot\right)+R^{\phi}=f+G\left(\cdot, y^{\phi}\right) \phi \quad \text { in } V^{\prime}, y^{\phi}(0)=u_{0} \text { in } H, \\
y^{\phi} \geq \psi \text { a.e. in } D \times[0, T], \\
-R^{\phi} \in\left(V^{\prime}\right)^{+}:\left\langle R^{\phi}, y^{\phi}-\psi\right\rangle V^{\prime}, V=0 \text { a.e. in }[0, T] .
\end{array}\right.
$$

- Uniqueness \longleftrightarrow monotonicity+ Lipschitz multiplicative noise.
- Existence \& L-S inequalities: Regular data \rightarrow general data \checkmark Talk by Guy Vallet at 14:00
- $\max \left(1, \frac{2 d}{d+2}\right)<p<2 \longleftrightarrow G\left(\cdot y^{\phi}\right) \phi$ ц $\quad L^{\infty}(. . ;)$ in $H_{4}+H_{5}$!

b- Continuity of skeleton equations

Let $\left\{v^{\delta}: \delta>0\right\} \subset S_{N}$ satisfying that $v_{\delta} \rightharpoonup v$ as $\delta \rightarrow 0$. Then

- $g^{0}\left(\int_{0} v_{s}^{\delta} d s\right)$ converges to $g^{0}\left(\int_{0}^{j} v_{s} d s\right)$ in the space $C([0, T] ; H)$,
- If moreover H_{7} holds, then

$$
g^{0}\left(\int_{0} v_{s}^{\delta} d s\right) \rightarrow g^{0}\left(\int_{0} v_{s} d s\right) \text { in } L^{p}(0, T ; V) \cap C([0, T] ; H)
$$

Let $\left(\phi_{n}\right)_{n} \subset S_{N}$ such that $\phi_{n} \rightharpoonup \phi$ in $L^{2}\left(0, T ; H_{0}\right)$.

$$
y_{n} \rightarrow y^{\phi} \text { in } L^{p}(0, T ; V) \cap C([0, T] ; H) ?
$$

y_{n} and y^{ϕ} resp. are the solutions of (2) corresponding to ϕ_{n} and ϕ resp.

- A priori estimates \nVdash L-S inequalities
- Convergence of $y_{n_{k}} \rightarrow y$ in $L^{2}(0, T ; H) \longleftrightarrow$ Compactness \checkmark
- Boundedness of $\left(\phi_{n}\right) \&$ weak $\mathrm{cv}+$ strong $\mathrm{cv} y_{n} \rightarrow y$ in $L^{2}(0, T ; H)$.
- Monotonicity \Longrightarrow convergence of $y_{n_{k}}$ to \tilde{y}.
- cv of y_{n} and $\tilde{y}=y^{\phi}{ }_{\text {tw }}$ Uniqueness \checkmark

c- vanishing multiplicative noise $\delta \downarrow 0$

Assume $H_{1}-H_{6}$. Let $\left\{\phi^{\delta}: \delta>0\right\} \subset \mathcal{A}_{N}$ for some $N<\infty$. Then

$$
\lim _{\delta \rightarrow 0} P\left(\sup _{t \in[0, T]}\left\|\left(v_{\delta}-u_{\delta}\right)(t)\right\|_{H}>\epsilon\right)=0, \quad \forall \epsilon>0
$$

Moreover, if H_{7} holds, then $\lim _{\delta \rightarrow 0} P\left(\left|v_{\delta}-u_{\delta}\right|_{T}>\epsilon\right)=0, \quad \forall \epsilon>0$.

$$
\begin{aligned}
& v_{\delta}=g^{\delta}\left(W(\cdot)+\frac{1}{\delta} \int_{0}^{\cdot} \phi^{\delta}(s) d s\right)=g^{\delta}\left(W^{\delta}(\cdot)\right), \\
& u_{\delta}=g^{0}\left(\phi^{\delta}\right)
\end{aligned}
$$

Let $\left\{\phi^{\delta}\right\}_{\delta>0} \subset \mathcal{A}_{N}$ for some $N<\infty$.

- Girsanov theorem $\Longrightarrow \exists Q$-Wiener process W^{δ}, with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ on $\left(\Omega, \mathcal{F}, P^{\delta}\right)$ where
$W^{\delta}(t)=W(t)+\frac{1}{\delta} \int_{0}^{t} \phi^{\delta}(s) d s, \quad t \in[0, T]$ and
$d P^{\delta}=\exp \left[-\frac{1}{\delta} \int_{0}^{T}\left\langle\phi^{\delta}(s), d W(s)\right\rangle_{H_{0}}-\frac{1}{2 \delta^{2}} \int_{0}^{T}\left\|\phi^{\delta}(s)\right\|_{H_{0}}^{2} d s\right] d P$.
$\rightsquigarrow v_{\delta}=g^{\delta}\left(W(\cdot)+\frac{1}{\delta} \int_{0} \phi^{\delta}(s) d s\right)=g^{\delta}\left(W^{\delta}(\cdot)\right)$.

Let $\left\{\phi^{\delta}\right\}_{\delta>0} \subset \mathcal{A}_{N}$ for some $N<\infty$.

- Girsanov theorem $\Longrightarrow \exists Q$-Wiener process W^{δ}, with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ on $\left(\Omega, \mathcal{F}, P^{\delta}\right)$ where

$$
\begin{align*}
W^{\delta}(t) & =W(t)+\frac{1}{\delta} \int_{0}^{t} \phi^{\delta}(s) d s, \quad t \in[0, T] \text { and } \\
d P^{\delta} & =\exp \left[-\frac{1}{\delta} \int_{0}^{T}\left\langle\phi^{\delta}(s), d W(s)\right\rangle_{H_{0}}-\frac{1}{2 \delta^{2}} \int_{0}^{T}\left\|\phi^{\delta}(s)\right\|_{H_{0}}^{2} d s\right] d P . \tag{5}
\end{align*}
$$

$\rightsquigarrow v_{\delta}=g^{\delta}\left(W(\cdot)+\frac{1}{\delta} \int_{0} \phi^{\delta}(s) d s\right)=g^{\delta}\left(W^{\delta}(\cdot)\right)$.

- Uniform estimates for $\left(v_{\delta}\right)$ and $\left(u_{\delta}\right): \psi$ is "deterministic"!

L-S not preserved $\rightsquigarrow P^{\delta}$!

- Conclusion.

Invariant measures

- Morkovian process
- $\lim _{t \rightarrow \infty} P_{t}^{*} \delta_{u_{0}}$ for given transition probability (semigroup) P_{t} ?
- Convergence to equilibrium? (strongly mixing, Exponential...).
- Ergodicity: for any $\varphi \in L^{2}(H, \mu)$
"Temporal" average of $P_{t} \varphi$ coincides with the "spatial" average of φ.

Invariant measures $(T \rightarrow+\infty)$

$$
\begin{cases}d u+A(u) d s+k d s=f d s+G(u) d W & \text { in } D \times \Omega_{T}, \tag{6}\\ u(t=0)=u_{0} \text { in } D ; \quad u \geq \psi & \text { in } D \times \Omega_{T}, \\ u=0 & \text { on } \partial D \times \Omega_{T}, \\ \langle k, u-\psi\rangle_{V^{\prime}, V}=0 \text { and }-k \in\left(V^{\prime}\right)^{+} & \text {a.e. in } \Omega_{T},\end{cases}
$$

- $A: V \rightarrow V^{\prime}$ and $G: H \rightarrow L_{2}\left(H_{0}, H\right)$ are measurables.
- A is T-monotone, coercive, hemicontinuous + growth.
- $\forall \theta, \sigma \in H:\|G(\theta)-G(\sigma)\|_{L_{2}\left(H_{0}, H\right)}^{2} \leq L_{G}\|\theta-\sigma\|_{H}^{2}$; $\|G(0, \cdot)\|_{L_{2}\left(H_{0}, H\right)}^{2}<\infty$.
- $\psi \in V$ and $G(\psi)=0, f \in V^{\prime}$ such that $f-A(\psi)=h \in V^{*}$.
- $u_{0} \in H$ satisfies the constraint, i.e. $u_{0} \geq \psi$.

Theorem

$\exists!(u, k)$ to (6). Moreover, the following L-S inequality holds

$$
\begin{equation*}
0 \leq \partial_{t}\left(u-\int_{0} G(u) d W\right)+A(u)-f=-k \leq h^{-}=(f-A(\psi))^{-} . \tag{7}
\end{equation*}
$$

Theorem

$\exists!(u, k)$ to (6). Moreover, the following L-S inequality holds

$$
\begin{equation*}
0 \leq \partial_{t}\left(u-\int_{0} G(u) d W\right)+A(u)-f=-k \leq h^{-}=(f-A(\psi))^{-} . \tag{7}
\end{equation*}
$$

\rightsquigarrow Let $\epsilon>0$ and consider the following approximating problem:

$$
\left\{\begin{array}{l}
u_{\epsilon}(t)+\int_{0}^{t}\left(A\left(u_{\epsilon}\right)-\frac{1}{\epsilon}\left[\left(u_{\epsilon}-\psi\right)^{-}\right]^{\tilde{q}-1}-f\right) d s=u_{0}+\int_{0}^{t} \widetilde{G}\left(u_{\epsilon}\right) d W(s) \tag{8}\\
u_{0} \geq \psi,
\end{array}\right.
$$

where $\tilde{q}=\min (p, 2)$ and $\tilde{G}\left(u_{\epsilon}\right)=G\left(\max \left(u_{\epsilon}, \psi\right)\right)$.
\rightsquigarrow Let u_{ϵ} and u, respectively are the unique solution of (8) and (6):

$$
\begin{equation*}
E \sup _{t \in[0, T]}\left\|\left(u_{\epsilon}-u\right)(t)\right\|_{H}^{2} \leq C \epsilon \quad \text { for all } \epsilon>0 \tag{9}
\end{equation*}
$$

Markov semigroup

Let $\epsilon>0$ and $u_{\epsilon}(t, s ; \xi), t \geq s \geq 0$ be the unique strong solution to (8) starting at time s from an \mathcal{F}_{s}-measurable initial data $\xi \in H$. Let $T>0$,

$$
\mathbb{E}\left\|u_{\epsilon}(t, s ; \xi)-u_{\epsilon}(t, s ; \theta)\right\|_{H}^{2} \leq e^{\left[L_{G}+2 \lambda\right](t-s)} \mathbb{E}\|\xi-\theta\|_{H}^{2} \quad \forall 0 \leq s \leq t \leq T .
$$

- $\mathcal{C}_{b}(H)$: the set of bounded continuous function from H to \mathbb{R}.

$$
P_{t}^{\epsilon} \varphi: H \rightarrow \mathbb{R} ; \quad\left(P_{t}^{\epsilon} \varphi\right)(\xi):=\mathbb{E}\left[\varphi\left(u_{\epsilon}(t ; \xi)\right)\right], \quad \xi \in H, \varphi \in \mathcal{C}_{b}(H),
$$

where $u_{\epsilon}(t ; \xi), t \geq 0$ is the unique strong solution to (8), $\xi \in H$.

Markov semigroup

Let $\epsilon>0$ and $u_{\epsilon}(t, s ; \xi), t \geq s \geq 0$ be the unique strong solution to (8) starting at time s from an \mathcal{F}_{s}-measurable initial data $\xi \in H$. Let $T>0$,

$$
\mathbb{E}\left\|u_{\epsilon}(t, s ; \xi)-u_{\epsilon}(t, s ; \theta)\right\|_{H}^{2} \leq e^{\left[L_{G}+2 \lambda\right](t-s)} \mathbb{E}\|\xi-\theta\|_{H}^{2} \quad \forall 0 \leq s \leq t \leq T .
$$

- $\mathcal{C}_{b}(H)$: the set of bounded continuous function from H to \mathbb{R}.

$$
P_{t}^{\epsilon} \varphi: H \rightarrow \mathbb{R} ; \quad\left(P_{t}^{\epsilon} \varphi\right)(\xi):=\mathbb{E}\left[\varphi\left(u_{\epsilon}(t ; \xi)\right)\right], \quad \xi \in H, \varphi \in \mathcal{C}_{b}(H),
$$

where $u_{\epsilon}(t ; \xi), t \geq 0$ is the unique strong solution to (8), $\xi \in H$.

- Standard arguments \Longrightarrow

$$
\begin{aligned}
& P_{s, t}^{\epsilon}=P_{0, t-s}^{\epsilon} \quad \forall 0 \leq s \leq t<\infty \text { and } P_{t}^{\epsilon}:=P_{0, t}^{\epsilon} \\
& \mathbb{E}\left[\varphi\left(u_{\epsilon}(t+s ; \eta)\right) \mid \mathcal{F}_{t}\right]=\left(P_{s}^{\epsilon} \varphi\right)\left(u_{\epsilon}(t ; \eta)\right) \quad \forall \varphi \in \mathcal{C}_{b}(H), \forall \eta \in H, \forall t, s>0,
\end{aligned}
$$

- Denote by $P_{s, t}^{\epsilon} \varphi(\xi):=\mathbb{E}\left[\varphi\left(u_{\epsilon}(t, s ; \xi)\right)\right], \quad \xi \in H$.

$$
\left(P_{t+s}^{\epsilon} \varphi\right)(\eta)=\left(P_{t}^{\epsilon}\left(P_{s}^{\epsilon} \varphi\right)\right)(\eta) \quad \forall \varphi \in \mathcal{C}_{b}(H), \forall \eta \in H, \forall t, s>0 .
$$

Solution of (8) defines a homogeneous Feller-Markov process.

- Denote by $P_{s, t}^{\epsilon} \varphi(\xi):=\mathbb{E}\left[\varphi\left(u_{\epsilon}(t, s ; \xi)\right)\right], \quad \xi \in H$.

$$
\left(P_{t+s}^{\epsilon} \varphi\right)(\eta)=\left(P_{t}^{\epsilon}\left(P_{s}^{\epsilon} \varphi\right)\right)(\eta) \quad \forall \varphi \in \mathcal{C}_{b}(H), \forall \eta \in H, \forall t, s>0 .
$$

Solution of (8) defines a homogeneous Feller-Markov process.

$$
K_{\psi}=\{h \in H, \quad h \geq \psi\}
$$

- Let $\eta \in K_{\psi}$ and $u(t ; \eta) \in K_{\psi}, t \geq 0$ be the unique strong solution to (6). $\mathbb{E}\|u(t, s ; \xi)-u(t, s ; \theta)\|_{H}^{2} \leq e^{\left[L_{G}+2 \lambda_{T}\right](t-s)} \mathbb{E}\|\xi-\theta\|_{H}^{2} \quad \forall 0 \leq s \leq t \leq T$,
$[u(t, s ; \xi)]_{t \geq s \geq 0}$ is the unique strong solution to (6) with $u(s)=\xi \in K_{\psi}$.

Semigroup for the obstacle problem

$\rightsquigarrow u(t ; \eta), t \geq 0$ be the unique strong solution to (6) starting from $\eta \in K_{\psi}$.

$$
P_{t} \varphi: K_{\psi} \rightarrow \mathbb{R} ; \quad\left(P_{t} \varphi\right)(\eta):=\mathbb{E}[\varphi(u(t ; \eta))], \quad \eta \in K_{\psi} \quad \forall \varphi \in \mathcal{C}_{b}(H) .
$$

[^2]
Semigroup for the obstacle problem

 $\rightsquigarrow u(t ; \eta), t \geq 0$ be the unique strong solution to (6) starting from $\eta \in K_{\psi}$.$$
P_{t} \varphi: K_{\psi} \rightarrow \mathbb{R} ; \quad\left(P_{t} \varphi\right)(\eta):=\mathbb{E}[\varphi(u(t ; \eta))], \quad \eta \in K_{\psi} \quad \forall \varphi \in \mathcal{C}_{b}(H)
$$

Lemma

$\left(P_{t}\right)_{t}$ is bounded on $\mathcal{C}_{b}(H)$, Markov-Feller and stochastically continuous semigroup on $\mathcal{C}_{b}\left(K_{\psi}\right)$. Moreover, for $\varphi \in \mathcal{C}_{b}(H), \eta \in K_{\psi}$, and $t, s \geq 0$:

$$
\lim _{\epsilon \rightarrow 0}\left(P_{t}^{\epsilon} \varphi\right)(\eta)=\left(P_{t} \varphi\right)(\eta), \quad\left(P_{t+s} \varphi\right)(\eta)=\left(P_{t}\left(P_{s} \varphi\right)\right)(\eta)
$$

$$
P_{t+s, t}=P_{s, 0}, P_{t, s} \varphi(\eta):=\mathbb{E}[\varphi(u(t, s ; \eta))] \text { for } 0 \leq s \leq t<\infty, P_{t}:=P_{0, t} .
$$

- Convergence in law for u_{ϵ}, cv of $\left(P_{t}^{\epsilon}\right)_{\epsilon}$ and [Lemma 1] ${ }^{2}$.

[^3]
Definition

Let $\left(P_{t}\right)_{t}$ be a Markov semigroup on H.

- a probability measure ν is said to be invariant for P_{t} if:

$$
\int_{H} P_{t} \varphi d \nu=\int_{H} \varphi d \nu, \quad \forall \varphi \in B_{b}(H) \text { and } t \geq 0 .
$$

- Let ν be an invariant measure for P_{t}, ν is ergodic if:

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} P_{t} \varphi d t=\int_{H} \varphi(x) \mu(d x), \quad \forall \varphi \in L^{2}(H, \mu) .
$$

- P_{t} is strongly mixing if: $\lim _{t \rightarrow+\infty} P_{t} \varphi(x)=\int_{H} \varphi(x) \mu(d x)$ in $L^{2}(H, \mu)$.

Theorem

Under the above assumptions $H_{1}-H_{6}$:
(1) There exists an ergodic invariant measure μ for $\left(P_{t}\right)_{t}$ if $p>2$.
(2) Assuming $p=2$ and there exists $\bar{\alpha}>0$ such that

$$
\left.(1-\delta) \alpha-C_{D}\left[\lambda+\frac{L_{G}\left(1+K^{2}\right)}{2 K^{2}}\right]^{+} \geq \bar{\alpha} \text { for some } \delta \in\right] 0,1[, \forall K>0
$$

then there exists an ergodic invariant measure μ for $\left(P_{t}\right)_{t}$.
Moreover, μ is concentrated in V satisfying $\int_{H}\|x\|_{V}^{p} \mu(d x)<+\infty$.

$$
C_{D}>0: \quad\|u\|_{H}^{2} \leq C_{D}\|u\|_{V}^{2}, \quad \forall u \in V,
$$

Theorem

Under the above assumptions $H_{1}-H_{6}$:
(1) There exists an ergodic invariant measure μ for $\left(P_{t}\right)_{t}$ if $p>2$.
(2) Assuming $p=2$ and there exists $\bar{\alpha}>0$ such that

$$
\left.(1-\delta) \alpha-C_{D}\left[\lambda+\frac{L_{G}\left(1+K^{2}\right)}{2 K^{2}}\right]^{+} \geq \bar{\alpha} \text { for some } \delta \in\right] 0,1[, \forall K>0
$$

then there exists an ergodic invariant measure μ for $\left(P_{t}\right)_{t}$.
Moreover, μ is concentrated in V satisfying $\int_{H}\|x\|_{V}^{p} \mu(d x)<+\infty$.

$$
C_{D}>0: \quad\|u\|_{H}^{2} \leq C_{D}\|u\|_{V}^{2}, \quad \forall u \in V,
$$

Assuming $\max \left(1, \frac{2 d}{d+2}\right)<p<2$ and $\lambda+\frac{L_{G}\left(1+K^{2}\right)}{2 K^{2}} \leq 0$. Then there exists an invariant measure μ for $\left(P_{t}\right)_{t}$!

The set $\left\{\nu_{n}:=\frac{1}{t_{n}} \int_{0}^{t_{n}} \mu_{s}^{\eta} d s ; n \in \mathbb{N}^{*}\right\}$ is tight on H. μ_{s}^{η} is the law of $u(s ; \eta)$

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}\|u(t)\|_{H}^{2}+(1-\delta) \alpha \int_{0}^{t} \mathbb{E}\|u\|_{V}^{p} d s & \leq \frac{1}{2}\|\eta\|_{H}^{2}+C\left(p, f, \psi, L_{G}\right) t \\
(K>0) & +\left[\lambda+\frac{L_{G}\left(1+K^{2}\right)}{2 K^{2}}\right] \int_{0}^{t} \mathbb{E}\|u\|_{H}^{2} d s .
\end{aligned}
$$

The set $\left\{\nu_{n}:=\frac{1}{t_{n}} \int_{0}^{t_{n}} \mu_{s}^{\eta} d s ; n \in \mathbb{N}^{*}\right\}$ is tight on H. μ_{s}^{η} is the law of $u(s ; \eta)$

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}\|u(t)\|_{H}^{2}+(1-\delta) \alpha \int_{0}^{t} \mathbb{E}\|u\|_{V}^{p} d s & \leq \frac{1}{2}\|\eta\|_{H}^{2}+C\left(p, f, \psi, L_{G}\right) t \\
(K>0) & +\left[\lambda+\frac{L_{G}\left(1+K^{2}\right)}{2 K^{2}}\right] \int_{0}^{t} \mathbb{E}\|u\|_{H}^{2} d s
\end{aligned}
$$

Let $B_{R}:=\{v \in V:\|v\| v \leq R\} ; R \in \mathbb{N}$. Let $t_{n}>0, R>0$.

$$
\nu_{n}\left(B_{R}^{c}\right)=\frac{1}{t_{n}} \int_{0}^{t_{n}} P(\|u(s ; \eta)\| v>R) d s \leq \frac{1}{t_{n} R^{p}} \int_{0}^{t_{n}} \mathbb{E}\|u(s ; \eta)\|_{V}^{p} d s
$$

\rightsquigarrow "Krylov-Bogolyubov method" \Longrightarrow Exist. of an invariant measure \checkmark

The set $\left\{\nu_{n}:=\frac{1}{t_{n}} \int_{0}^{t_{n}} \mu_{s}^{\eta} d s ; n \in \mathbb{N}^{*}\right\}$ is tight on H. μ_{s}^{η} is the law of $u(s ; \eta)$

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}\|u(t)\|_{H}^{2}+(1-\delta) \alpha \int_{0}^{t} \mathbb{E}\|u\|_{V}^{p} d s & \leq \frac{1}{2}\|\eta\|_{H}^{2}+C\left(p, f, \psi, L_{G}\right) t \\
(K>0) & +\left[\lambda+\frac{L_{G}\left(1+K^{2}\right)}{2 K^{2}}\right] \int_{0}^{t} \mathbb{E}\|u\|_{H}^{2} d s .
\end{aligned}
$$

Let $B_{R}:=\{v \in V:\|v\| v \leq R\} ; R \in \mathbb{N}$. Let $t_{n}>0, R>0$.

$$
\nu_{n}\left(B_{R}^{c}\right)=\frac{1}{t_{n}} \int_{0}^{t_{n}} P(\|u(s ; \eta)\| v>R) d s \leq \frac{1}{t_{n} R^{p}} \int_{0}^{t_{n}} \mathbb{E}\|u(s ; \eta)\|_{V}^{p} d s
$$

\rightsquigarrow "Krylov-Bogolyubov method" \Longrightarrow Exist. of an invariant measure \checkmark

$$
\nu_{n} \rightharpoonup \mu \Longrightarrow \int_{H}\|x\|_{V}^{p} \mu(d x)<+\infty \Longrightarrow \mu \text { is ergodic. }
$$

Theorem

Assume moreover that $\frac{L_{G}}{2}+\lambda_{T}<0$, then there exists a unique ergodic and strongly mixing invariant measure μ and the following convergence to equilibrium holds.

$$
\begin{equation*}
\left|P_{t} \varphi(x)-\int_{H} \varphi(y) \mu(d y)\right| \leq C\|\varphi\|_{1, \infty} e^{\left[\frac{L_{G}}{2}+\lambda_{T}\right] t}, \quad \forall \varphi \in \mathcal{C}_{b}^{1}(H) \tag{10}
\end{equation*}
$$

\rightsquigarrow Difference of two ergodic invariant measures.
\rightsquigarrow Continuity of P_{t} w.r.t. initial data.

Theorem

Assume moreover that $\frac{L_{G}}{2}+\lambda_{T}<0$, then there exists a unique ergodic and strongly mixing invariant measure μ and the following convergence to equilibrium holds.

$$
\begin{equation*}
\left|P_{t} \varphi(x)-\int_{H} \varphi(y) \mu(d y)\right| \leq C\|\varphi\|_{1, \infty} e^{\left[\frac{L_{G}}{2}+\lambda_{T}\right] t}, \quad \forall \varphi \in \mathcal{C}_{b}^{1}(H) \tag{10}
\end{equation*}
$$

\rightsquigarrow Difference of two ergodic invariant measures.
\rightsquigarrow Continuity of P_{t} w.r.t. initial data.

$$
\begin{aligned}
& d u-\left[\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)-u\right] d t+k 1_{\{u=0\}} d t=f d t+u d \beta_{t}, \quad u \geq 0 \\
& u_{0} \in\left(L^{2}(D)\right)^{+},-f \in\left(L^{2}(D)\right)^{+} \quad(p \geq 2)
\end{aligned}
$$

Comments

- Condition on L_{G} um multiplicative noise.
- $G(\psi)=0$ uns dual order assumption.
- LDP via standard method $\rightsquigarrow>$ Reflected measure?

Comments

- Condition on L_{G} um multiplicative noise.
- $G(\psi)=0$ uns dual order assumption.
- LDP via standard method $u \rightarrow$ Reflected measure?
- $\max \left(1, \frac{2 d}{d+2}\right)<p<2 \rightarrow 4$ Local monotone obstacle problem! \rightsquigarrow Example? Only additive noise but...!

Comments

- Condition on $L_{G} \longleftrightarrow$ multiplicative noise.
- $G(\psi)=0 \longleftrightarrow$ dual order assumption.
- LDP via standard method $\rightsquigarrow>$ Reflected measure?
- $\max \left(1, \frac{2 d}{d+2}\right)<p<2$ Lus Local monotone obstacle problem! \rightsquigarrow Example? Only additive noise but...!
- Obstacle nonlinear problem with rough forcing e.g. $W(t)$? \rightsquigarrow Open!
- Additive noise \& invariant measures.

Thank you for your attention!

T- Yassine Tahraoui: Large deviations for an obstacle problem with T-monotone operator and multiplicative noise. (2023)
available on arXiv: https://arxiv.org/abs/2308.02206
R-: Invariant measures and ergodicity for T-monotone problems with constraint and multiplicative noise. "preprint"

[^0]: ${ }^{1}$ M. Röckner, B. Schmuland and X. Zhang: Yamada-Watanabe theorem for stochastic

[^1]: ${ }^{1}$ M. Röckner, B. Schmuland and X. Zhang: Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matter Phys. 54, 247-259, $\overline{\equiv 2008} \equiv$

[^2]: ${ }^{2}$ L. Zambotti. A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. JFA, 180(1), 195-209, 2001.

[^3]: ${ }^{2}$ L. Zambotti. A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. JFA, 180(1), 195-209, 2001.

