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SPDE with regular drift

Consider the stochastic reaction-diffusion

∂tu(t, x) =
1
2
∂2xxu(t, x) + b(u(t, x)) + ξ (?)

where ξ is a space-time white noise and b is a (one-sided) Lipschitz function,
i.e. polynomial-like function with negative sign of leading coefficient.

The existence and uniqueness of solutions are quite well-understood, but these
results do not cover the natural cases of discontinuous drifts or reflected
diffusions which are expected in physical models.
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SPDE with singular drift

Consider again the stochastic reaction-diffusion

∂tu(t, x) =
1
2
∂2xxu(t, x) + b(u(t, x)) + ξ (?)

where ξ is a space-time white noise, but where b is a generalized function in

Besov space Bγp,∞(Rd).

In dimension d = 1, Athreya, Butkovsky, Lê, Mytnik [ABLM21] proved that
there exists a unique strong solution whenever b has some Hölder regularity
(precisely Besov regularity γ − 1/p ≥ −1, γ > −1 and p ∈ [1,∞]).
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SPDE with singular drift

We can treat the following case

∂tu(t, x) =
1
2
∂2xxu(t, x) + k1u=0(u(t, x)) + Wt

So a new way of proof for SPDE with singular drift, reflection, penalization.

Furthermore, without monotonic behavior, or (one-sided) Lipschitz condition.
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Euler scheme

For the SPDE
dXt = AXtdt + b(Xt)dt + dWt

consider the Euler scheme with time step h = T/N

X n+1 = X n + A(X n)h + b(X n)h + ∆W n+1

then the strong order is given by

E
[

sup
0≤n≤N

‖Xnh − X n‖2
]
≤ CTh.
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Euler scheme: rate of convergence

E
[

sup
0≤n≤N

‖Xnh − X n‖2
]
≤ CTh.

The usual way of proof is to obtain the bound of moments

E
[

sup
0≤n≤N

‖X n‖p
]
≤ CT ,

and it is expected that the order of convergence is given by the time regularity
of the noise based on the control of

E

[
sup

0≤t,s≤T ,|t−s|<h

‖Wt −Ws‖2
]
≤ CTh E

[
sup

0≤t≤T
‖Wt‖p

]
≤ CT ,

There are many way to obtain the same regularity/moment bounds for the
Euler scheme, but it NEEDS an implicit treatment of the differential operator
(see also exponential scheme, splitting, etc.). Otherwise it has been shown that
the forward/explicit Euler scheme may not be convergent (for instance with
superlinear growing of b).
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Bounded drift

Consider

dXt = 1{Xt>0}dt + dBH
t ,

dXt = 1
(d)
D (Xt)dt + dBH

t .

Then b ∈ C0−/B0∞ leads to bn(x) =

√
n

2π

∫ x

0
e−

ny2
2 dy and n = bh−1c.

Dirac drift

Consider
dXt = δ0(Xt)dt + dBH

t .

Then b ∈ C−1−/B
−d+ d

p
p leads to bn(x) =

√
n

2π
e−

nx2
2 and n = bh−

1
1+d c.

Set h = 2−710−4 as reference value.
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Indicator function in dimension 1 - exact algorithm

Figure: It works!
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Indicator function in dimension 1 - tamed algorithm

Figure: It works quite well...
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Dirac distribution in dimension 1 - naive algorithm

Figure: It does not work!
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Dirac δ function in dimension 1
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We study the equation

dXt = b(Xt)dt + dBH
t ,

when b is a distribution in some Hölder/Besov space and BH is a fractional
Brownian motion.

We look for solutions of the form

Xt = X0 + Kt + BH
t ,

where in case b is regular enough, Kt =

∫ t

0
b(Xs)ds.

F-fBm

For a filtration F, we say that BH is an F-fBm if there exists an F-Brownian

motion W s.t. BH
t =

∫ t

0
KH(t, s) dWs .
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Weak solutions

Xt = X0 +

∫ t

0
b(Xs) ds + BH

t , t ∈ [0,T ]. (∗)

Definition

((Xt)t∈[0,T ], (Bt)t∈[0,T ]) defined on some filtered probability space (Ω,F ,F,P)
is a weak solution of (∗) if

BH is an F-fBm;

X is adapted to F;
∃(Kt)t∈[0,T ] such that, a.s.,

Xt = X0 + Kt + BH
t , ∀t ∈ [0,T ];

∀(bk)k∈N smooth bounded functions converging to b in Cα/Bγ−p ,

sup
t∈[0,T ]

∣∣∣∣∫ t

0
bk(Xr )dr − Kt

∣∣∣∣ P−→
k→+∞

0.
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Consider b is a generalized function in

Besov space Bγp,∞(Rd).

A few properties:

Bγp,∞(Rd) ↪→ Cγ−d/p(Rd) (γ − d/p is the “regularity” of the space);

You can think: α = γ − d/p is the Hölder regularity.

For γ − d/p = 0, the space Bγp,∞(Rd) contains bounded functions;

1R+ ∈ B
0
∞,∞(R1).

For γ − d/p < 0, the space Bγp,∞(Rd) contains genuine distributions;

δ0 ∈ B01,∞(R) (or B
−d+ d

p
p,∞ (Rd) in dimension d).
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Weak and strong existence

Theorem ([Anzeletti-Richard-Tanré ’21], [G.-Haress-Richard.’22])

Let γ ∈ R, p ∈ [1,∞], b ∈ Cα/Bγp .
[weak] Assume that

α = γ − d

p
>

1
2
− 1

2H
.

Then there exists a weak solution X s.t. X − BH ∈ Cκ[0,T ](L
m), for all m ≥ 2,

∀κ ∈ (0, 1 + Hα] \ {1}, ∀κ ∈
(
0, 1 + H

(
γ − d

p

)]
\ {1}.

[strong] Assume that

H <
1
2
, γ − d

p
< 0 and γ − d

p
> 1− 1

2H
.

Then there exists a strong solution X to (∗) such that X − B ∈ C
1
2 +H

[0,T ] (Lm) for
any m ≥ 2. Besides, pathwise uniqueness holds in the class of all solutions X

such that X − B ∈ C
1
2 +H

[0,T ] (L2).
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Reflection?

Example

If b = δ0 (b ∈ C−1/B01) and d = 1, one must choose H <
1
3
.

Then X − BH has Hölder regularity 1− H (> H), hence X is not reflected.
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SPDE with singular drift

We conclude the introduction by commenting on the needs to treat SDE first.

It is known that for each fixed space point, the free stochastic heat equation
(that is, equation (?) with b = 0) behaves “qualitatively” like a fractional
Brownian motion (fBM) with the Hurst parameter H = 1/4.

Indeed, the solution of

∂tu(t, x) =
1
2
∂2xxu(t, x) + Ẇ (t, x)

is given by the well-known stochastic convolution

Z(t, x) = e
t
2 ∆u0(x) +

∫ t

0
e

t−s
2 ∆dW (s, x)

which has regularity C
1
4− in time and C

1
2− in space.

Ludovic Goudenège - CNRS New way of proof
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SPDE with singular drift towards SDE with fractional noise

To solve
∂tu(t, x) =

1
2
∂2xxu(t, x) + b(u(t, x)) + Ẇ (t, x). (?)

Denote Y (t, x) = u(t, x)− Z(t, x), then the previous remark leads to solve

∂t(u(t, x)− Z(t, x)) =
1
2
∂2xx(u(t, x)− Z(t, x)) + b(u(t, x)− Z(t, x) + Z(t, x))

a random PDE with C
1
4− regularity in translation.

Therefore, one can expect that strong existence and uniqueness for equation
(?) would hold under the same conditions on b as needed in a SDE driven by
1
4
-fractional Brownian motion.

That is b ∈ Cα/Bγp , where α = γ − 1/p > −1.
Note that the Dirac delta function lies in B−1+1/p

p which is the critical case.

Ludovic Goudenège - CNRS New way of proof
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Figure: Before touching
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Figure: Breaks physical limit
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Elements of proof: The basic ingredient is the stochastic sewing lemma.

Lemma ([Lê’20])

Let m ∈ [2,∞). Let A : ∆0,1 → Lm(Ω) s.t. As,t is Ft -measurable. Assume

∃Γ1, Γ2 ≥ 0, and ε1, ε2 > 0 s.t. ∀(s, t) ∈ ∆0,1 and u :=
s + t

2
,

‖Es [δAs,u,t ]‖Lm ≤ Γ1 (t − s)1+ε1 ,

‖δAs,u,t‖Lm ≤ Γ2 (t − s)
1
2 +ε2 .

Then ∃(At)t∈[0,1] s.t. ∀t ∈ [0, 1] and any sequence of partitions Πk = {tki }Nk
i=0

of [0, t] with mesh size going to zero,

At = lim
k→∞

Nk∑
i=0

Atki ,t
k
i+1

in proba.

Moreover, ∃C s.t. ∀(s, t) ∈ ∆0,1,
‖At −As − As,t‖Lm ≤ C Γ1 (t − s)1+ε1 + C Γ2 (t − s)

1
2 +ε2 ,

‖Es [At −As − As,t ]‖Lm ≤ C Γ1 (t − s)1+ε1 .
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Elements of proof

It leads to key estimates for “smooth” f :

(ψt) is F-adapted, m ∈ [2,∞), p ∈ [m,∞] and γ < 0 s.t.
(γ − d/p) > −1/(2H). Let α ∈ (0, 1) s.t. H(γ − d/p − 1) + α > 0,∥∥∥∫ t

s

f (Br + ψr ) dr
∥∥∥
Lm(Ω)

≤ C ‖f ‖Bγp (t − s)1+H(γ−d/p)

+ C ‖f ‖Bγp [ψ]Cα
[s,t]

Lm (t − s)1+H(γ−d/p−1)+α.

(1)

−→ leads to existence via a tightness-stability argument.

m ∈ [2,∞) and p ∈ [m,∞] and 0 > γ > 1− 1/(2H). For any
Fs -measurable κ1, κ2 ∈ Lm(Ω),∥∥∥∫ t

s

f (Br + κ1)− f (Br + κ2)dr
∥∥∥
Lm

≤ C‖f ‖Bγp ‖κ1 − κ2‖Lm (t − s)1+H(γ−d/p−1),

(2)

(for uniqueness).
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Elements of proof II

Why the condition γ − d

p
>

1
2
− 1

2H
in the theorem?

Consider (bn) in C∞ ∩ Bγp that approximates b. Let X n be the solution with
drift bn.

1) We look for a priori estimate on the Hölder regularity of X n − B. If
uniform in n, we get tightness.

2) In (1), replace f by bn, X by X n and K n
t :=

∫ t

0
bn(Xs)ds ≡ ψt . Then for

any α such that H(γ − d/p − 1) + α > 0,

‖K n
t − K n

s ‖Lm(Ω) ≤C ‖bn‖Bγp (t − s)1+H(γ−d/p)

+ C ‖bn‖Bγp [K n]Cα
[s,t]

Lm (t − s)1+H(γ−d/p−1)+α.

3) Choosing α = 1 + H(γ − d/p) above with H(γ − d/p − 1) + α > 0

requires γ − d

p
>

1
2
− 1

2H
. Then for t − s small enough,

[K n]Cα
[s,t]

Lm ≤ C ‖bn‖Bγp +
1
2

[K n]Cα
[s,t]

Lm .

4) Extend to any s ≤ t and get tightness.

Ludovic Goudenège - CNRS New way of proof
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Let h > 0 and (bn) that approximates b in Bγ−p (Rd). Consider the following
tamed Euler scheme:

X h,n
t = X0 +

∫ t

0
bn(X h,n

rh )dr + Bt ,

where rh = hb r
h
c.

Ludovic Goudenège - CNRS New way of proof
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“Subcritical” case

Theorem ([G.-Haress-Richard.’22])

Let H <
1
2
, m ≥ 2 and p ∈ [m,∞]. Let b ∈ Bγp and assume

0 > γ − d

p
> 1− 1

2H
.

Let X denote a weak solution such that X − B ∈ C
1
2 +H

[0,T ] (Lm). Let ε ∈ (0,
1
2

).

Then ∀h ∈ (0, 1) and ∀n ∈ N,

[Xt − X h,n
t ]
C
1
2 Lm
≤ C

(
‖bn − b‖Bγ−1p

+ ‖bn‖∞h
1
2−ε

+ ‖bn‖∞‖bn‖C1h1−ε
)
.
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Denote by Gt the Gaussian semigroup with variance t. Then

‖G 1
n
b − b‖Bγ−1p

. n−
1
2 ‖b‖Bγp ,

‖G 1
n
b‖∞ . n

1
2 (−γ+ d

p
) ‖b‖Bγp ,

‖G 1
n
b‖C1 . n

1
2 (1−γ+ d

p
) ‖b‖Bγp .

Corollary

Let h ∈ (0,
1
2

), nh = bh
− 1

1−γ+ d
p c and bnh = G 1

nh

b. Then

[Xt − X h,nh
t ]

C
1
2 Lm
≤ C h

1
2(1−γ+ d

p
)
−ε
.
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“Critical” case

Theorem ([G.-Haress-Richard.’22])

Let H <
1
2
, m ≥ 2 and p ∈ [m,∞]. Let b ∈ Bγp and assume

γ − d

p
= 1− 1

2H
and p < +∞.

Let

ε(h, n) = ‖b − bn‖Bγ−1p
(1 + | log(‖b − bn‖Bγ−1p

)|)

+ ‖bn‖∞h
1
2−ε + ‖bn‖C1‖bn‖∞h1−ε.

Then ∃C , ρ > 0 such that for all h ∈ (0, 1) and n ∈ N,

[Xt − X h,n
t ]
C
1
2−Lm

≤ Cε(h, n)ρ.

Ludovic Goudenège - CNRS New way of proof
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Rates

The orders of convergence obtained here compared to regular b from Butkovsky
et al. (2021a); Dareiotis at al. (2021); De Angelis et Al. (2019) are:

Drift Rate

α > 0
(1
2

+ Hα
)
∧ 1

γ − d

p
> 0

(1
2

+ H

(
γ − d

p

))
∧ 1− ε

α = 0 ∼ Bounded
1
2

γ − d

p
= 0

1
2
− ε

γ − d

p
∈
(
1− 1

2H
, 0
)

1
2(1− γ + d

p
)
− ε

γ − d

p
= 1− 1

2H
and p <∞ ρ = He−M − ε
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Elements of proof I

Define

K n
t :=

∫ t

0
bn(Xr )dr and K h,n

t :=

∫ t

0
bn(X h,n

rh )dr .

Decompose the error as follows:

Xt − X h,n
t −(Xs − X h,n

s ) = Kt − Ks − (K n
t − K n

s ) (3)

+

∫ t

s

(bn(Kr + Br )− bn(K h,n
r + Br ))dr (4)

+

∫ t

s

(bn(K h,n
r + Br )− bn(K h,n

rh + Brh ))dr . (5)

Denote by E 1,h,n
s,t the term in (4), E 2,h,n

s,t the term in (5), and
E h,n
s,t = E 1,h,n

s,t + E 2,h,n
s,t .

Ludovic Goudenège - CNRS New way of proof
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Elements of proof II

The terms (3) and (4) are controlled “classically” by stochastic sewing:

[K − K n]
C
1
2

[s,t]
Lm
≤ C‖b − bn‖Bγ−1p

and

‖E 1,h,n
s,t ‖Lm ≤ C([E h,n]

C
1
2

[s,t]
Lm

+ ‖b − bn‖Bγ−1p
)(t − s)1+H(γ− d

p
−1)

.

The last term E 2,h,n
s,t can be controlled using Girsanov, but this leads to an

exponential dependence in ‖bn‖∞. Instead with use again the SSL to get

‖E 2,h,n
s,t ‖Lm ≤ C

(
(‖bn‖∞ + 1) h

1
2 (t − s)1+H(γ− d

p
−1)

+ ‖bn‖∞ h
1
2−ε |t − s|

1
2 +ε

+ ‖bn‖C1 ‖bn‖∞ h1−ε (t − s)1+ε
)
.

Ludovic Goudenège - CNRS New way of proof
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Consequences

Definition

Pathwise uniqueness holds if for any solutions (X ,B) and (Y ,B) defined
on the same filtered probability space with the same B and same initial
condition X0, X and Y are indistinguishable.

A weak solution (X ,B) such that X is FB -adapted is called a strong
solution.

Ludovic Goudenège - CNRS New way of proof
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Strong existence and uniqueness

As a consequence of the convergence of the Euler scheme,

Theorem ([G.-Haress-Richard.’22])

Let H <
1
2
, γ ∈ R, p ∈ [1,∞] and b ∈ Bγp . Assume that

0 > γ − d

p
≥ 1− 1

2H
and γ > 1− 1

2H
.

There exists a strong solution X to (∗) such that [X − B]C1/2+H
[0,1]

Lm,∞
<∞

for any m ≥ 2.

Pathwise uniqueness holds in the class of solutions such that
[X − B]C1/2+H

[0,1]
L2,∞

<∞.

If γ − d

p
> 1− 1

2H
, for all η ∈ (0, 1), pathwise uniqueness holds in the

class of solutions such that [X − B]CH(1−γ+d/p)+η
[0,1]

L2,∞
<∞.

Ludovic Goudenège - CNRS New way of proof
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Stochastic PDEs

Consider
∂tu(t, x) =

1
2
∂2xxu(t, x) + b(u(t, x)) + ξ (?)

where ξ is a space-time white noise and b is a distribution in some Besov
space, with bounded mesurable initial data ψ0.

In [Athreya et al.’20], it is proven that there exists a weak solution with certain
regularity. The goal is to approximate it.

Consider a sequence bk of smooth function which approximates the distribution
b in some sense.
We say that a sequence of smooth bounded functions (bk) converges to b in
Bγ−p as k goes to infinity if sup

k∈N
‖bk‖Bγp < ‖b‖Bγp <∞

lim
k→∞

‖bk − b‖
Bγ
′

p
= 0 ∀γ′ < γ.

Ludovic Goudenège - CNRS New way of proof
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Definition of solution

Definition

A couple ((ut(x))t∈[0,1]
x∈[0,1]

, ξ) is a weak solution on some filtered space
(

Ω,P,F
)

if there exists a process K : [0, 1]× [0, 1]× Ω→ R such that

(1) ξ is an F-space time white noise.

(2) u is adapted to F.
(3) ut(x) = Ptψ0(x) + Kt(x) + Ot(x) a.s where x ∈ [0, 1], t ∈ [0, 1].

(4) For any sequence (bk)k∈N in Cb∞ converging to b in Bγ−p , we have

sup
t∈[0,1]
x∈[0,1]

∣∣∣∣∫ t

0

∫ 1

0
pt−r (x , y)bk(ur (y))dydr − Kt(x)

∣∣∣∣ P−→
k→∞

0.

(5) Almost surely, the function u is continuous on [0, 1]× [0, 1].

If the couple is clear from the context, we simply say that u is a weak solution.
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Mild form and Gaussian operators

The mild form associated to the SPDE is

ut(x) = Ptψ0(x) +

∫ t

0

∫ 1

0
pt−r (x , y)b(ur (y))dydr + Ot(x) .

Notice that the mild form is also not well-posed when b is a genuine
distribution. To define a solution , we first specify in which spaces we take b,
and then define how we approximate b via a smooth sequence.
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Mild form and Gaussian operators

We encounter different heat kernels: the continuum Gaussian on R,

gt(x) =
1√
2πt

exp

(
−x2

2t

)
, the continuum heat kernel on [0, 1] associated

with the boundary conditions

pt(x , y) = pt(x−y) =
∑
k∈Z

1√
4πt

exp
(
− (x − y + k)2

4t

)
=
∑
k∈Z

e−4π
2k2te i2πk(x−y).

We denote by G· and P· the respective convolutions with the g· and p·.

That is, for any bounded measurable function f , we write

Gt f (x) =

∫ 1

0
gt(x − y)f (y)dy , and Pt f (x) =

∫ 1

0
pt(x − y)dy .

We also denote the convolution operator by (f ? g)(x) =

∫
f (x − y)g(y)dy .
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Mild form and Gaussian operators

We denote by Q(t) the variance of the Ornstein-Uhlenbeck process

Ot(x) =

∫ t

0

∫ 1

0
pt−r (x , y)ξ(dy , dr). In fact, for all x ∈ [0, 1]

E
(
Ot(x)2

)
=

∫ t

0

∫ 1

0
pt(x − y)2dydr =

∫ t

0

∫ 1

0
p2t(y)dydr =: Q(t).

Moreover, writing Zs,t(x) = Ot(x)− Pt−sOs(x) for t ≥ s, we have that the
random variable Zs,t(x) is independent of Fs and

E
(
Zs,t(x)

)2
= Q(t − s).

The following equality will be used a lot. For any continuous function h and
Fs -measurable random variable Y one has the almost sure equality

Esh (Ot(x) + Y ) = GQ(t−s)h (Pt−sOs(x) + Y ) .

Ludovic Goudenège - CNRS New way of proof



54/82

Singular model of equations
Sewing approach and Tamed Euler scheme

Tamed Euler scheme for SPDE

Finite differences
Controlling the error

Finite differences

We study a tamed Euler finite-difference.

Fix k ∈ N, such that bk is close to b.

Let h ∈ (0, 1) be a time step of the form h = c(2n)−2 for some n ∈ N, where c

is a constant satisfying the CFL condition c >
1
2
.

We introduce the following space and time grids.

Πn =
{
0, (2n)−1, . . . , (2n − 1)(2n)−1

}
, Λh = {0, h, 2h, . . .} .

We can now define the numerical scheme for x ∈ Πn and t ∈ Λh as{
uh,k
t+h(x) = uh,k

t (x) + h∆nu
h,k
t (x) + hbk

(
uh,k
t (x)

)
+ hηh,n(t, x)

uh,k
0 (x) = ψ0(x),

Ludovic Goudenège - CNRS New way of proof
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Finite differences

∆n is the discrete Laplacian

∆nf (x) = (2n)2
(
f
(
x + (2n)−1

)
− 2f (x) + f

(
x − (2n)−1

))
,

and discrete noise ηh,n is given by

ηh(t, x) = (2n)h−1ξ
(
[t, t + h]×

[
x , x + (2n)−1

])
.
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The goal is the rate of convergence

Rate of convergence

For the right choice of bk and k, we prove the following rate of convergence for
the approximation uh,k

sup
t∈Λh
x∈Πn

||ut − uh,k
t ||Lm(Ω) ≤ C

(
n
− 1

2(1−γ+ 1
p

)

)
.

Ludovic Goudenège - CNRS New way of proof
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Approximated operator

Consider the functions ej(x) = e i2πjx for j ∈ Z. They are eigenfunctions of ∆
with eigenvalues λj = −4π2j2. It is well known that (ej)j∈Z forms an
orthonormal basis of L2([0, 1],C).

The eigenvalues of the discrete Laplacian ∆h are

λn
j = −16n2 sin2

(
jπ

2n

)
for j ∈ Z .

Ludovic Goudenège - CNRS New way of proof



58/82

Singular model of equations
Sewing approach and Tamed Euler scheme

Tamed Euler scheme for SPDE

Finite differences
Controlling the error

Approximated operator

We know that for −n ≤ j , l ≤ n − 1,

∆hej(x) = λh
j ej(x),

and
1
2n

∑
x∈Πn

ej(x)e`(x) = 1j=`.

As a consequence, ei for i ∈ [−n, n − 1], as functions on Πn form a basis of
L2 (Πn;C).

It will be convenient to use the piecewise linear extension of the restriction of ej
to Πn : for −n ≤ j ≤ n − 1, for x ∈ Πn, and x ′ ∈

[
x , x + (2n)−1

]
, set

ej
(
x ′
)

= ej(x) + (2n)
(
x ′ − x

) (
ej
(
x + (2n)−1

)
− ej(x)

)
.
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Approximated operator

It remains to encode the temporal discretisation.

Naturally, on the temporal gridpoints t = kh a factor
(
1 + hλn

j

)k appears.

Between the gridpoints, we again interpolate linearly. More precisely, for
j = −n, . . . , n − 1, for t ∈ Λh, and t′ ∈ [t, t + h], set

µh
j

(
t′
)

=
(
1 + hλn

j

)th−1
+ h−1

(
t′ − t

) ((
1 + hλn

j

)(t+h)h−1 −
(
1 + hλn

j

)th−1)
.
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Discrete mild form

We can now define the discrete heat kernel and discrete convolution.
Our goal is to write the numerical scheme in a mild form similar to classical
mild form for SPDEs.

For t ∈ [0, 1] and x ∈ [0, 1], denote by th and xn the leftmost gridpoint from t
in Λh and from x in Πn respectively.

The mild form associated to the scheme is

uh,k
t (x) = Pn

t ψ0(x) +

∫ t

0
Pn

(t−s)h
bk
(
uh,k
sh

)
(x)ds +

∫ t

0

∫ 1

0
pn

(t−s)h
(x , y)ξ(dy , ds)

where Pn and pn are respectively the discrete analogues of P and p.
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Discrete mild form

They are defined for all t ∈ [0, 1] and x ∈ [0, 1]

Pn
t f (x) := pn

t ?n f and pn
t (x , y) =

n−1∑
j=−n

µn
j (t)enj (x)enj (yn).

Moreover, ?n denotes the discrete convolution

g ?n f (x) :=

∫ 1

0
g(x − y)f (yn)dy .
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Ornstein-Uhlenbeck process

Definition

We define the discrete Ornstein-Uhlenbeck process as

On
t (x) :=

∫ t

0

∫ 1

0
ph

(t−r)h
(x , y)ξ(dy , dr) ,

Analogously to Ot , for s ≤ t, we define Ôh
s,t and Z h

s,t by

On
t (x) =

∫ s

0

∫ 1

0
pn

(t−r)h
(x , y)ξ(dy , dr) +

∫ t

s

∫ 1

0
pn

(t−r)n (x , y)ξ(dy , dr)

=: Ôn
s,t + Z n

s,t .
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Ornstein-Uhlenbeck process

Notice that Z n
s,t(x) is a random variable independent of Fs and has variance

E
(
Z n
s,t(x)2

)
=

∫ t−s

0

∫ 1

0
|pn

rn (x , y)|2 dydr

=

∫ t−s

0

n−1∑
j=−n

∣∣1 + hλn
j

∣∣2rhh−1 dr =: Qn(t − s) .

Also similarly to Ot , we have that for any continuous function h and
Fs -measurable random variable Y

Esh (On
t (x) + Y ) = GQn(t−s)h

(
Ôn

s,t(x) + Y
)
.
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Controlling the error

We are interested in controlling the error Eh,k between the solution u and the
numerical scheme uh,k , defined for (s, t) ∈ ∆0,1 and x ∈ [0, 1] by

Eh,ks,t (x) = ut(x)− Pt−sus(x)−
∫ t

s

Pn
(t−s)h

bk(uh,k
rh )(x)dr .
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Elements of Proof I

For all (s, t) ∈ ∆0,1 and x ∈ [0, 1], we write

Eh,ks,t (x) = vt(x)− Pt−svs −
∫ t

s

Pn
(t−r)h

bk(vh,k
rh + Pn

rhψ0 + On
rh )(x)ds

= vt(x)− v k
t (x)− Pt−svs(x) + Pt−sv

k
s (x)

+

∫ t

s

(
P(t−r)b

k(vr + Prψ0 + Or )(x)

−
∫ t

s

Pn
(t−r)h

bk(vh,k
rh + Pn

rhψ0 + On
rh (x))(x)

)
ds

:= V k
t − Pt−sV

k
s + E1,h,ks,t + E2,h,ks,t + E3,h,ks,t ,

:= ε(h, k) + E1,h,ks,t
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Elements of Proof II

E1,h,ks,t =

∫ t

0

∫ 1

0
pt−r (x , y)

(
bk(vr (y) + Prψ0(y) + Or (y))

− bk(vh,k
r (y) + Pn

r ψ0(y) + On
r (y))

)
dydr

E2,h,ks,t =

∫ t

0

∫ 1

0
pt−r (x , y)

(
bk(vh,k

r (y) + Pn
r ψ0(y) + On

r (y))

− bk(vh,k
rh (yn) + Pn

rhψ0(yn) + On
rh (yn))

)
dydr

E3,h,ks,t =

∫ t

0

∫ 1

0
(pt−r − pn

(t−r)h
)(x , y)bk(vh,k

rh (yn) + Pn
rhψ0(yn) + On

rh (yn))dydr .

will be controlled on small intervals.
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Elements of Proof III

On all intervals [S ,T ], we have

[V k ]
C
1
2

[S,T ]
Lm
≤ C‖b − bk‖Bγ−1p

.

[E2,h,k ]
C
1
2

[S,T ]
Lm

+ [E3,h,k ]
C
1
2

[S,T ]
Lm

≤ C
(

(1 + ‖bk‖∞)n−
1
2 +ε + (1 + ‖bk‖∞)(1 + ‖bk‖C1)n−1+ε

)
.

which reads

ε(h, k) ≤ C
(
‖b − bk‖Bγ−1p

+ (1 + ‖bk‖∞)n−
1
2 +ε + (1 + ‖bk‖∞)(1 + ‖bk‖C1)n−1+ε

)
.

The last step is to obtain

[E1,h,k ]
C
1
2

[S,T ]
Lm
≤ C

(
[Eh,k ]

C
1
2

[S,T ]
Lm

+ [Eh,k ]
C
1
2

[0,S]
Lm

+ ε(h, k)
)

(T − S)
1
4 (γ+1−1/p).
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Elements of Proof IV

Hence the bound

[Eh,k ]
C
1
2

[S,T ]
Lm
≤ ε(h, k) + C

(
[Eh,k ]

C
1
2

[S,T ]
Lm

+ [Eh,k ]
C
1
2

[0,S]
Lm

)
(T − S)

1
4 (γ+1−1/p).

leads to

[Eh,k ]
C
1
2

[0,1]
Lm
≤ Cε(h, k),

which is controlled.

Ludovic Goudenège - CNRS New way of proof



70/82

Singular model of equations
Sewing approach and Tamed Euler scheme

Tamed Euler scheme for SPDE

Finite differences
Controlling the error

Theoretical Results

Let γ ∈ R, p ∈ [1,∞] such that

0 > γ − 1
p
≥ −1 and γ > −1. (A1)

Let b ∈ Bγp , m ∈ [2,∞), ε ∈ (0, 1/2) and let ψ0 ∈ C
1
2−ε([0, 1],R).

Let u be the strong solution to the SPDE with drift b.

Let (bk) be a sequence of smooth functions that converges to b in Bγ−p and
(uh,k)h∈(0,1),k∈N be the tamed Euler finite-differences scheme defined on the
same probability space and with the same space-time white noise ξ as u.
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Theoretical Results

Theorem (G.-Haress-Richard)

(a) Regularity of the tamed Euler scheme: Let η ∈
(
0,

1
2

)
, D be a subset of

[0, 1]× N and assume that

sup
(h,k)∈D

‖bk‖∞h
1
4−η <∞ and sup

(h,k)∈D
‖bk‖C1h

1
2 <∞, (A2)

then sup
(h,k)∈D

{uh,k − O}
C
1
2 +η

[0,1]
Lm,∞

<∞.
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Theoretical Results

Theorem (G.-Haress-Richard)

Assume that [u − O]C3/4
[0,1]

Lm,∞
<∞.

(b) The sub-critical case: If −1 < γ − d/p < 0, then there exists a constant C
that depends on m, p, γ, ε, ‖b‖Bγp , ‖ψ0‖

C
1
2−ε

such that for all h ∈ (0, 1) and
k ∈ N, the following bound holds:

[Eh,k ]
C
1
2

[0,1]
Lm
≤ C

(
‖bk − b‖Bγ−1p

+ (1 + ‖bk‖∞)n−
1
2 +ε + ‖bk‖∞‖bk‖C1n−1+ε

)
.
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Theoretical Results

Theorem (G.-Haress-Richard)

Assume that [u − O]C3/4
[0,1]

Lm,∞
<∞.

(c) The critical case: If γ − 1/p = −1 and p < +∞. If (A2) holds, then there
exists two constants C1,C2 that depend on m, p, γ, ε, ‖b‖Bγp , ‖ψ0‖

C
1
2−ε

such
that for all h ∈ (0, 1) and k ∈ N, the following bound holds:

[Eh,k0,· ]L∞
[0,1]

Lm ≤ C1

(
‖b − bk‖Bγ−1p

(1 + | log ‖b − bk‖Bγ−1p
|) + (1 + ‖bk‖∞)n−

1
2 +ε

+ (1 + ‖bk‖∞)(1 + ‖bk‖C1)n−1+ε
)C2

.
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Theoretical Results

Regularity γ − 1
p

= 0 γ − 1
p
∈ (−1, 0) γ − 1

p
= −1 and p <∞

Space Order
1
2
− ε 1

2− 2(γ − 1
p

)
− ε C > 0

Time Order
1
4
− ε 1

4− 4(γ − 1
p

)
− ε C/2 > 0

Table: Rate of convergence of the tamed Euler finite-differences scheme depending on
the Besov regularity of the drift.
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Numerical simulation - Stochastic heat equation with Dirac drift

-3 -2.5 -2 -1.5 -1 -0.5

-1.5

-1

-0.5

0

0.5

1

1.5

numerical order

order 1/4

order 1/2

order 1

Figure: Approximate slope is 0.36
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Numerical simulation - regularized Dirac in 0
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Numerical simulation - Dirac in 0
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Numerical simulation - Dirac in 1
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Thanks for your attention !
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