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Introduction

Application: crack propagation, exemple provided by [OMDL16]

Adherents: GFRP;

Glue: epoxy resin.

Joint works with: C. Bauzet, F. Nabet, F. Lebon
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Introduction

Objectives of the study

Numerical simulations of adhesive behaviour:

with interface approximating law;

with damage;

with stochastic effects.
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Plan of the talk

Plan of the talk

1. Introduction

2. A General Model of Damaging Materials

3. Modeling of interfaces

4. Introduction of Stochastic Effects

5. Numerical Results
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A General Model of Damaging Materials Introduction of a damage variable

A General Model of Damaging Materials

For this part, we follow [LRR23]. For that purpose, we define

the displacement field u;

the elastic strain tensor e(u) which is the symmetrical gradient of u;

A variable R which the a crack density and represents an internal variable of damage.
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A General Model of Damaging Materials Introduction of a damage variable

A specific free energy potential is chosen as

ψ(e(u), R) =
1

2
K(R)e(u) : e(u) + ω(R) +

α

p
|∇R|p + χ[0,1](R) (3.1)

where

K(R) is the stiffness tensor of the material (adhesive);

χA is the indicator function of the set A:

χA(x) =

{
0 if x ∈ A

+∞ if x /∈ A

the reals p and α are materials parameters;

ω(R) is an activation energy of damage;

|∇R|p models the non-local character of damage.
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A General Model of Damaging Materials Evolution of the damage variable

Evolution of the state variable R

For that, we introduce a dissipation potential Φ:

Φ(Ṙ) =
1

β + 1
η(R)Ṙβ+1 + χ[0;+∞[(Ṙ)

where

β (which controls the damage velocity) and η > 0 (viscosity parameter) are material
parameters;

χ[0;+∞[(Ṙ) means that the damage is irreversible.

Then, the evolution law of the damage R is


η(R)Ṙβ = −

(
ω,R(R) +

1
2
K,R(R)e(u)e(u) + α∆pR

)
−

R(0) = R0

(3.2)

where (·)− denotes the negative part of a function and ∆pR is the p-laplacian of R.
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A General Model of Damaging Materials Exemple in a 1D case

Exemple in a 1D case

In this case, the evolution of the damage R, equation (3.2), becomes:

η(R)Ṙβ = −
(
ω,R(R) +

1

2
E,R(R)ϵ

2

)
−

where
ϵ is the uniaxial strain;

E,R(R) represents the derivative w.r.t. R of the Young’s modulus of the damaged
adhesive.

Using [WG10], one has
E(R) = E0(1− 2πR)

where E0 is the Young’s modulus of the undamaged material.

For the numerical simulations, a linear strain ramp is imposed: ϵ(t) = ϵ̇t the equation
(3.2) becomes

Ṙ =
1

η(R)

[
−
(
ω,R(R)− πE0ϵ̇

2t2
)
−

] 1
β (3.3)
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A General Model of Damaging Materials Exemple in a 1D case

Data
ω,R(R) ≡ ω̄ = 0.06 Pa;

η(R) ≡ η̄ = 3.6 102 Pa;

R0 = 0 (undamaged adhesive at the beginning).

We also consider the normalised time t = 1
ϵ̇

(
ω̄

πE0

) 1
2 1

2.7
.
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A General Model of Damaging Materials Exemple in a 1D case

Figure 1: Evolution of the damage variable w.r.t. time for various values of β
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Modeling of interfaces Introduction

Modeling of interfaces

Issue

To a given set of elastics bodies glued together with an interphase with a small thickness,

what is the good modeling to correctly approximate the behavior of the interphase by an
interface law ?

Γ

x3

x1

x3

ũ

ũ

x1

Ω−

Ω+Ω̃ε
+

uεε Ω̄ε

uε

uε

Γ0Γ0

Γ1 Γ1

Ω̃ε
−

⊗
x2
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Modeling of interfaces Introduction

Governing equilibrium equations


divσε + f = 0 in Ωε

± ∪ Ωε

σεn = g on Γ1

uε = ud on Γ0

σε = K̄ε
±e(u

ε) in Ωε
±

σε = K̂εe(uε) in Ωε

(4.1)

where e(uε) = ∇symu
ε.

⊗
x2

x3

x1

Ω̃ε
+

Ω̃ε
−

uεε Ω̄ε

uε

uε

Γ0

Γ1

Figure 2: Geometry of the initial
problem
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Modeling of interfaces Introduction

Variational formulation
Find uε ∈ V (Ωε) such that

Āε
−(u

ε, vε) + Āε
+(u

ε, vε) + Âε(uε, vε) = Lε(vε),

(4.2)

for all uε ∈ V (Ωε), where

The functional space: V (Ωε) := {uε ∈ H1(Ωε;R3); uε = 0 on Γε
u},

the bilinear forms in the adherents are

Āε
±(u

ε, vε) :=

∫
Ωε

±

K̄ε∇εuε ·∇εvεdxε (4.3)

the bilinear form in the adhesive is

Âε(uε, vε) :=

∫
Ωε

K̂ε∇εuε ·∇εvεdxε (4.4)
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Modeling of interfaces Introduction

and the linear form Lε(·) is defined by

Lε(vε) :=

∫
Ωε

±

f · vεdxε +
∫
Γε
g

f · vεdΓε.

By virtue of the regularity of the loads, the positivity of the constitutive matrices and
thanks to the Lax-Milgram’s lemma, problem admits one and only one solution.

Now, in the equation (4.2):


Find uε ∈ V (Ωε) such that

Āε
−(u

ε, vε) + Āε
+(u

ε, vε) + Âε(uε, vε) = Lε(vε),

we want to approximate Âε by an integral on the surface Γ (interface condition).
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Modeling of interfaces Asymptotic analysis: Principle of the method

Main ideas of the method

Computation of the interface law: make asymptotic expansions in term of the small
parameter ε

L+ + ε
2

ũ

ũ

x1

Ω−

Ω+

Γ0

Γ1

L− + ε
2

Γ

x3
⊗

x2 = z2

Γ1

ūε

z1

Ω̃−

ũε

Ω̃+

Ω̄

1

L+

L−

z3

x1

Ω̃ε
+

Ω̃ε
−

uεΩ̄ε

uε

Γ0

Γ1

L+

L−

ε

uε

x3

ũε

Γ0

Figure 3: The change of variable

Changes of variables: (like in homogenization methods)

dilatation in the interphase (adhesive): (z1, z2, z3) = (x1, x2,
x3
ε
) =⇒ ∂

∂z3
= 1

ε
∂
∂x3

;

translations in the adherents: (z1, z2, z3) = (x1, x2, x3 ± 1−ε
2

).
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Modeling of interfaces Asymptotic analysis: Principle of the method

Assumptions on constitutive matrices:

We assume that the constitutive matrices in Ωε
± are independent of ε,

K̄ε = K̄,

while the constitutive coefficients of Ωε present the following dependences on ε:

K̂ε = εpK̂,

with p ∈ {−1, 0, 1}.

Three different limit behaviors will be characterized according to the choice of the
exponent p:

in the case of p = −1, we derive a model for a rigid interface (reinforcement,
welding);

in the case of p = 0, we derive a model for a hard interface;

in the case of p = 1, we deduce a model for a soft interface.
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Modeling of interfaces Interface conditions

Inside the interphase, we seek the solution as an asymptotic expansion with respect to ε:
uε = û0 + εû1 + ε2û2 + ... (Displacement)

σε = σ̂0 + εσ̂1 + ε2σ̂2 + ... (Stress)
(4.5)

Interface conditions: notations

ε

x3

x1Γ0

Γ1

Ω+

u+

u−

⊗
x2

Ω−

Γ

Interface colinear to (x1, x2): Γ = {(x1, x2, x3) ∈ Ω, x3 = C0};

Jump across the interface:
[f ](x1, x2) = lim

x3→C0+ ε
2

f(x1, x2, x3) − lim
x3→C0− ε

2

f(x1, x2, x3)

Average on the interface:

< f >(x1, x2) =
1

2

(
lim

x3→C0+ ε
2

f(x1, x2, x3) + lim
x3→C0− ε

2

f(x1, x2, x3)

)
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Modeling of interfaces Interface conditions

Interface conditions in the case of soft interface (p = 1)

Using the rescaling and identifying at each order, one obtain the interface conditions

Order 0

Governing equations
−div σ̄0 = f in Ω±,

σ̄0n = g on Γ1,

ū0 = 0 on Γ0,

Transmission conditions on Γ±{
[ū0] = (K̂33)

−1⟨σ̄0e3⟩,
[σ̄0e3] = 0.

(4.6)

Order 1

Governing equations
−div σ̄1 = 0 in Ω±,

σ̄1n = 0 on Γ1,

ū1 = 0 on Γ0,

Transmission conditions on Γ±{
[ū1] = (K̂33)

−1
(
⟨σ̄1e3⟩ − K̂α3⟨ū0⟩,α

)
,

[σ̄1e3] = −K̂3α[ū
0],α.

(4.7)

Serge Dumont (UNIMES- IMAG) Stochastics Models of Interfaces with Damage: A Numerical StudyAugust 31, 2023 20 / 47



Modeling of interfaces Interface conditions

Interface conditions in the case of hard interface (p = 0)

One then obtain the interface conditions

Order 0

Governing equations
−div σ̄0 = f in Ω±,

σ̄0n = g on Γ1,

ū0 = 0 on Γ0,

Transmission conditions on Γ±{
[ū0] = 0,

[σ̄0e3] = 0.

(4.8)

Order 1

Governing equations
−div σ̄1 = 0 in Ω±,

σ̄1n = 0 on Γ1,

ū1 = 0 on Γ0,

Transmission conditions on Γ±[ū1] = (K̂33)
−1

(
⟨σ̄0e3⟩ − K̂α3⟨ū0⟩,α

)
,

[σ̄1e3] = −
(
K̂3α[ū

1],α + K̂αβ⟨ū0⟩,αβ

)
.

(4.9)
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Modeling of interfaces Implicit unified interface conditions

Implicit unified interface conditions

We denote by

ũε := ū0 + εū1;

σ̃ε := σ̄0 + εσ̄1

two suitable approximations for ūε and σ̄ε.

An alternative expression of the above transmission conditions can be given in terms of
⟨σ̃εe3⟩ and [σ̃εe3], which will be useful to write the variational formulation of the
interface problem:


⟨σ̃εe3⟩ = 1

ε
K̂ε

33[ũ
ε] + K̂ε

α3⟨ũε⟩,α + o(ε2),

[σ̃εe3] = −K̂ε
3α[ũ

ε],α − εK̂ε
αβ⟨ũε⟩,αβ + o(ε2).

(4.10)
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Modeling of interfaces Implicit unified interface conditions

Remarks

In the following, we will consider a soft interface law at order 0;

With this approximation, the displacement u is approximated by a linear function in
the third direction, then the strain is considered as constant inside the interphase
and the damage evolution equation becomes

η(R)Ṙβ = −
(
ω,R(R) +

1

2
K33

,R(R)[u][u] + α∆2
pR

)
−

(4.11)
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Introduction of Stochastic Effects Modeling

Introduction of Stochastic Effects

We start again from the article of [LRR23].

We remains that the equation of the evolution of R is


η(R)Ṙβ = −

(
ω,R(R) +

1
2
K,R(R)e(u)e(u) + α∆pR

)
−

R(0) = R0

(5.1)

which becomes for the 1D case with some additional hypothesis on the loading:

 Ṙ = 1
η(R)

[
−
(
ω,R(R)− πE0ε̇

2t2
)
−

] 1
β

R(0) = R0

(5.2)
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Introduction of Stochastic Effects Modeling

We propose to introduce some stochastic effects by using the following Stochastic
Ordinary Differential Equation:

∂t

(
R+

∫ t

0

h(R)dW

)
=

1

η(R)

[
−
(
ω,R(R)− πE0ε̇

2t2
)
−

] 1
β

R(0) = R0

(5.3)

for some given function h.

Writing

f(t, R) =
1

η(R)

[
−
(
ω,R(R)− πE0ε̇

2t2
)
−

] 1
β
,

(5.3) can be written

dR+ h(R)dW = f(t, R)dt (5.4)
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Introduction of Stochastic Effects Numerical Algorithms

Numerical Algorithms

In order to approximate the solutions of problem (5.4), let us introduce a time step δt
and a discrete sequence of time tn = nδt, n ∈ N,

Then, 2 classical numerical schemes can be introduced:

1 The Euler-Maruyama method [KP92]

Rn+1 ≃ Rn + f(tn, Rn)δt− h(Rn)dWn+1 (5.5)

which has an order of weak convergence equal to 1 and an order of strong
convergence equal to 1

2
;

2 The Milstein method [M75]

Rn+1 ≃ Rn + f(tn, Rn)δt− h(Rn)dWn+1 +
1

2
h(Rn)h

′(Rn)(dW
2
n+1 − δt) (5.6)

which has an order of weak convergence equal to 1 and an order of strong
convergence equal to 1.
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Introduction of Stochastic Effects Numerical Exemples

Numerical Exemples

Comparison between the deterministic and the 2 stochastic methods (h(w) = 10−1,
constant).

Figure 4: Comparizon deterministic/stochastic

Other data: δt = 10−2s, β = 0.5, ω,R(R) = ω̄ = 0.06 Pa; η(R) + η̄ = 3.6 102 Pa;
R0 = 0 (undamaged adhesive at the beginning).
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Introduction of Stochastic Effects Numerical Exemples

Remark on the increasing of the damage

In the previous modeling, the increasing of the damage is not ensured.
In order to ensure the irreversibility of the damage, the previous algorithm can be
adapted:

1 The Euler-Maruyama method

Rn+1 ≃ Rn + Max
(
0; f(tn, Rn)δt− h(Rn)dWn+1

)
(5.7)

2 The Milstein method

Rn+1 ≃ Rn+Max
(
0; f(tn, Rn)δt−h(Rn)dWn+1+

1

2
h(Rn)h

′(Rn)(dW
2
n+1−δt)

)
(5.8)
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Introduction of Stochastic Effects Numerical Exemples

Comparizon deterministic solution and Stochastic simulations with a growing constraint

Figure 5: Comparizon deterministic solution and Stochastic simulations with a growing constraint
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Introduction of Stochastic Effects Estimation of the Expectation

Estimation of the Expectation

We estimate the Expectation using the Central Limit Theorem.

The Algorithm is the following
1 Let X be a random variable, simulate (X1, ..., XN ) a sample drawn along the law

of X;
2 Compute estimators of the expectation and the variance

µN =
1

N

N∑
i=1

Xi σ2
N =

1

N − 1

N∑
i=1

(Xi − µN )2

3 Then, µN is an estimation of the expectation with an interval of confidence Iα,N

and a level of confidence α given by:

Iα,N =

[
µN − cα

σn√
N
,µN + cα

σn√
N

]
,

and for α = 95%, one has cα ≃ 1.96.
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Numerical Results A First Example

Application: computation of the expectation, using the Milstein Method

Tolerance for the computation of the expectation: 6.10−4, level of confidence: 95%.

Figure 6: Comparison (expectation) between non increasing and increasing modelings. Data:
β = 0.5, h(ω) ≡ 10−1, δt = 10−2s., T = 12s.
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Numerical Results A First Example

Figure 7: Expectation, h(ω) ≡ 5 · 10−1, β = 0.5, δt = 10−2s., T = 12s.
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Numerical Results A First Example

Figure 8: Expectation, β = 0.1, h(ω) ≡ 10−1, δt = 10−2s., T = 12.5s.
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Numerical Results A First Example

Figure 9: Expectation, β = 2, h(ω) ≡ 10−1, δt = 10−2s., T = 11s.

Serge Dumont (UNIMES- IMAG) Stochastics Models of Interfaces with Damage: A Numerical StudyAugust 31, 2023 34 / 47



Numerical Results A First Example

Figure 10: A solution, β = 2, h(ω) ≡ 10−1, δt = 10−2s., T = 11s.
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Numerical Results Convergence

Convergence
We plot here the quantity E(∥uδt − uex∥L2(0,T )) w.r.t. δt.
uex is approximated by uδt with δt very small.

Result in the case of non strictly increasing stochastic solution

Figure 11: Strong convergence, h(ω) ≡ 10−1, T = 20s.
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Numerical Results Convergence

Result in the case of strictly increasing stochastic solution

Figure 12: Strong convergence, h(ω) ≡ 10−1, T = 10s.
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Numerical Results A Second Example

A second example (1D, quasi-static)

L Adherent

ε Adhesive

F (t)

f
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Numerical Results A Second Example

Remark

If the damage R is known, a analytic solution can be obtained, both in the case of 2
phases solution and with the interface law. The difference between the two solutions are
controlled by ε2.

Data

ω̄ = 0.06 Pa; η(R) = η̄ = 3.6 · 102 Pa.

ε = 10−2cm., L = 1cm.;

Young’s modulus of the adherent: E = 1Pa;

Young’s modulus of the undamaged adhesive : E0 = 1Pa;

Normalized gravity: f = 1N, External force: F (t) = 1 + 0.1 sin(t)N.
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Numerical Results A Second Example

Evolution of the damage

In the case where the interface law in considered, the damage verify

Ṙβ = − 1

3.6 · 102

(
−0.06− π

E0(1− 2πR)2
(ε+ 0.1 sin(t))2

)
−

(6.1)

In the case of a 2 phases modeling, the damage verify

Ṙβ = − 1

3.6 · 102

(
−0.06− π

E0(1− 2πR)2
(ε+ 0.1 sin(t))2−1

2
E0(1− 2πR)ε2

)
−

(6.2)
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Numerical Results A Second Example

Comparison of the damage obtained with the 2 modelings

Figure 13: Comparison of the damage obtained with the 2 modelings (β = 1).
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Numerical Results A Second Example

Figure 14: Comparison of the damage obtained with the 2 modelings (β = 3).
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Numerical Results A Second Example

Figure 15: Evolution of the damage with various values of β (deterministic case with an interface
law).
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Numerical Results A Second Example

Figure 16: Comparison of the evolution of the damage with the deterministic and the stochastic
modelings (1 solution, β = 2, with an interface law).
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Numerical Results A Second Example

Figure 17: Comparison of the evolution of the damage with the deterministic and the stochastic
modelings (Average, β = 2, with an interface law).
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Numerical Results A Second Example

Thank you for your attention !
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Numerical Results A Second Example
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