Modelling and analysis of surface damage problems

Giovanna Bonfanti (University of Brescia - Italy)

joint research with

Elena Bonetti (University of Milano - Italy) Riccarda Rossi (University of Brescia - Italy)

Stochastic Models in Mechanics - Marseille, 31 Aug - 1 Sept, 2023

▲日▼▲□▼▲□▼▲□▼ 回 ろくで

Giovanna Bonfanti

Contact problems with adhesion

Applications to

- machine designing and manufacturing (use of adhesive materials in automotive and aerospace industry...)
- use of layered composite structures in building and civil engineering
- the interface regions between laminates affect the strength and stability of the structural elements
- the degradation of the adhesive substance on such regions may lead to material failure

↓ surface damage models

[Frémond, '80s-'90s & "Non-smooth thermomechanics" 2002]

 \rightarrow energy and dissipation concentrated on the contact surface = (=) (=) (=)

Giovanna Bonfanti

The nonisothermal case 00000

The model

We consider a thermoviscoelastic body $\Omega \subset \mathbb{R}^3$ which is in

contact with adhesion

with a rigid support on a (flat) prescribed part $\Gamma_{\rm c}$ of its boundary

 $\partial\Omega=\Gamma_1\cup\Gamma_2\cup\Gamma_{\rm c}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Giovanna Bonfanti

we study its evolution taking into account

- viscoelastic behavior in the bulk domain (under small deformations assumption)
- the unilateral contact (Signorini conditions)
- **•** the adhesion (\sim glue) between the body and the support
- frictional effects (Coulomb law)
- thermal effects: in the bulk domain and on the contact surface (for the moment, neglected)

Related literature

(on static, quasistatic, dynamic **contact problems** with or without friction, with or without adhesion/delamination, mainly in the **isothermal case**):

-
- Ballard, Cocou, Jean, Lebon, Léger, Point, Pratt, Raous
- Andersson, Andrews, Klarbring, Kuttler, Shillor, Wright, Sofonea, Telega
- Martins, Monteiro Marques, Oden
- Migórski, Mantic, Kruzič, Panagiotopoulos
- Bock, Eck, Jarušek, Krbec, Schatzman
- Kočvara, Mielke, Roubiček, Thomas
- ▶

The nonisothermal case

The model: the variables

- In the isothermal case
 - **•** in the **bulk domain** Ω :

 $\varepsilon(\mathbf{u})$ symm. linearized strain tensor

(**u** small displacement)

• on the **contact surface** Γ_c :

 χ (scalar) adhesion parameter

"phase parameter" \sim proportion of active bonds between body & support

The nonisothermal case

Future perspectives 0000

The equations for u and χ

- **&** Equations for **u** and χ are recovered from the **principle of virtual powers**
- The energy balance of the system also includes micro-forces and micro-motions, according to M. Frémond's approach

momentum balance:

$$\begin{cases} -\operatorname{div} \boldsymbol{\sigma} = \mathbf{f} & \text{in } \Omega \times (0, T), \\ \boldsymbol{\sigma} \mathbf{n} = \mathbf{R} & \text{in } \Gamma_{c} \times (0, T), \\ \mathbf{u} = \mathbf{0} & \text{in } \Gamma_{1} \times (0, T), \\ \boldsymbol{\sigma} \mathbf{n} = \mathbf{g} & \text{in } \Gamma_{2} \times (0, T), \end{cases}$$

 $\begin{cases} \sigma \text{ stress tensor} \\ \textbf{R} \text{ reaction on the contact surface} \\ \textbf{f} \text{ volume force, } \textbf{g} \text{ traction} \end{cases}$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Giovanna Bonfanti

The equations for u and χ

- **&** Equations for **u** and χ are recovered from the **principle of virtual powers**
- The energy balance of the system also includes micro-forces and micro-motions, according to M. Frémond's approach

momentum balance:

$$\begin{cases} -\operatorname{div} \boldsymbol{\sigma} = \mathbf{f} & \text{in } \Omega \times (0, T), \\ \boldsymbol{\sigma} \mathbf{n} = \mathbf{R} & \text{in } \Gamma_{c} \times (0, T), \\ \mathbf{u} = \mathbf{0} & \text{in } \Gamma_{1} \times (0, T), \\ \boldsymbol{\sigma} \mathbf{n} = \mathbf{g} & \text{in } \Gamma_{2} \times (0, T), \end{cases}$$

 $\begin{cases} \sigma \text{ stress tensor} \\ \mathbf{R} \text{ reaction on the contact surface} \\ \mathbf{f} \text{ volume force, } \mathbf{g} \text{ traction} \end{cases}$

balance equation for microscopic motions:

$$\begin{cases} B - \operatorname{div}_{s} \mathbf{H} = a \text{ in } \Gamma_{c} \times (0, T), \\ \mathbf{H} \cdot \mathbf{n}_{s} = 0 \text{ on } \partial \Gamma_{c} \times (0, T), \end{cases}$$

 $\begin{cases} B, \ \mathbf{H} \ \text{microscopic internal forces} \\ a \ \text{microscopic external source} \end{cases}$

・ロト・日本・日本・日本・日本・ショー うんの

Energy and dissipation functionals

Constitutive laws for σ , **R**, *B*, **H** are given in terms of volume & surface free energies

$$\Psi_{\Omega} = \Psi_{\Omega}(\varepsilon(\mathbf{u})), \qquad \qquad \Psi_{\Gamma_{c}} = \Psi_{\Gamma_{c}}(\mathbf{u}_{|_{\Gamma_{c}}}, \chi, \nabla\chi)$$

and the volume & surface potentials of dissipation

$$\Phi_{\Omega} = \Phi_{\Omega}(\varepsilon(\dot{\mathbf{u}})), \qquad \Phi_{\Gamma_{c}} = \Phi_{\Gamma_{c}}(\dot{\chi}, \dot{\mathbf{u}}_{|_{\Gamma_{c}}})$$

Energy and dissipation functionals

Constitutive laws for σ , **R**, *B*, **H** are given in terms of volume & surface free energies

$$\Psi_{\Omega} = \Psi_{\Omega}(\varepsilon(\mathbf{u})), \qquad \qquad \Psi_{\Gamma_{c}} = \Psi_{\Gamma_{c}}(\mathbf{u}_{|_{\Gamma_{c}}}, \chi, \nabla\chi)$$

and the volume & surface potentials of dissipation

$$\Phi_{\Omega} = \Phi_{\Omega}(\varepsilon(\dot{\mathbf{u}})), \qquad \Phi_{\Gamma_{c}} = \Phi_{\Gamma_{c}}(\dot{\chi}, \dot{\mathbf{u}}_{|_{\Gamma_{c}}})$$

► energy and dissipation potentials enforce physical constraints on the variables to ensure consistency: they hold +∞, for non-admissible values. → non-smooth (multivalued) operators in the equations

Energy and dissipation functionals

Constitutive laws for σ , **R**, *B*, **H** are given in terms of volume & surface free energies

$$\Psi_{\Omega} = \Psi_{\Omega}(\varepsilon(\mathbf{u})), \qquad \qquad \Psi_{\Gamma_{c}} = \Psi_{\Gamma_{c}}(\mathbf{u}_{|_{\Gamma_{c}}}, \chi, \nabla\chi)$$

and the volume & surface potentials of dissipation

$$\Phi_{\Omega} = \Phi_{\Omega}(\varepsilon(\dot{\mathbf{u}})), \qquad \Phi_{\Gamma_{c}} = \Phi_{\Gamma_{c}}(\dot{\chi}, \dot{\mathbf{u}}_{|_{\Gamma_{c}}})$$

- ► energy and dissipation potentials enforce physical constraints on the variables to ensure consistency: they hold +∞, for non-admissible values. → non-smooth (multivalued) operators in the equations
- [Raous, Cangémi, Cocou, '99] for a model close to the present one;
- [Del Piero, Raous, '10] for general models coupling friction, adhesion and unilateral contact.

The adhesion phenomenon

Notation for the normal and tangential components of displacement vector ${\bf u}$ and stress vector $\sigma {\bf n}$

 $\mathbf{u} = u_N \mathbf{n} + \mathbf{u}_T, \quad u_N = u_i n_i, \quad \sigma \mathbf{n} = \sigma_N \mathbf{n} + \sigma_T, \quad \sigma_N = \sigma_{ii} n_i n_i$

with $\mathbf{n} = (n_i)$ outward normal unit vector to $\partial \Omega$.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

The adhesion phenomenon

Notation for the normal and tangential components of displacement vector ${\bf u}$ and stress vector $\sigma {\bf n}$

 $\mathbf{u} = u_N \mathbf{n} + \mathbf{u}_T, \quad u_N = u_i n_i, \quad \sigma \mathbf{n} = \sigma_N \mathbf{n} + \sigma_T, \quad \sigma_N = \sigma_{ii} n_i n_i$

with $\mathbf{n} = (n_i)$ outward normal unit vector to $\partial \Omega$.

- The "surface damage parameter" $\chi \sim$ fraction of active glue fibers at each point of the contact surface

- $\chi = 0$ no adhesion (completely broken bonds)
- $\chi = 1$ complete adhesion (unbroken bonds)
- ▶ $0 < \chi < 1$ partial adhesion

We have to enforce

$$\chi \in [0,1]$$

Derivation of the model		
00000000000		

The adhesion phenomenon

We impose the constraint $\chi \in [0,1]$ by the term $I_{[0,1]}(\chi)$ in the surface energy functional

$$\Psi_{\Gamma_{c}} = \frac{1}{2} \chi |\mathbf{u}|^{2} + I_{(-\infty,0]}(\mathbf{u}_{N}) + \omega(1-\chi) + \frac{1}{2} |\nabla_{s} \chi|^{2} + I_{[0,1]}(\chi)$$

 $\Rightarrow \partial I_{[0,1]}(\chi) \text{ in eq. for } \chi$

$$\partial I_{[0,1]}(\chi) = \begin{cases} (-\infty, 0], & \text{if } \chi = 0, \\ 0, & \text{if } 0 < \chi < 1, \\ [0, +\infty), & \text{if } \chi = 1. \end{cases}$$

The adhesion phenomenon

• If the "damage" of the glue is **irreversible**, we enforce $\dot{\chi} \leq 0$ by the term $I_{(-\infty,0]}(\dot{\chi})$ in the surface dissipation potential

$$\Phi_{\Gamma_{\mathrm{c}}} = rac{1}{2} \left| \dot{\chi}
ight|^2 + I_{(-\infty,0]}(\dot{\chi})$$

$$\Rightarrow \frac{\partial I_{(-\infty,0]}(\dot{\chi}) \text{ in eq. for } \chi}{\partial I_{(-\infty,0]}(\dot{\chi})}$$

$$\partial I_{(-\infty,0]}(\dot{\chi}) = \begin{cases} 0, & \text{if } \dot{\chi} < 0, \\ [0,+\infty), & \text{if } \dot{\chi} = 0. \end{cases}$$

▲ロト▲聞と▲臣と▲臣と 臣 めんの

Giovanna Bonfanti

Future perspectives 0000

The PDE system: the evolution of the adhesion

The evolution of the adhesion on the contact surface is ruled by

$$\begin{split} \dot{\chi} &- \Delta_{\mathfrak{s}} \chi + \partial I_{[0,1]}(\chi) + \partial I_{]-\infty,0]}(\dot{\chi}) \ni \omega - \frac{1}{2} |\mathbf{u}|^2 \qquad \text{on } \Gamma_{c} \times (0,T) \\ \partial_{n_{s}} \chi &= 0, \qquad \qquad \text{on } \partial \Gamma_{c} \times (0,T) \end{split}$$

- $\partial I_{[0,1]}(\chi) \Rightarrow \chi \in [0,1]$ (physical consistency)
- $\partial I_{]-\infty,0]}(\dot{\chi}) \Rightarrow \dot{\chi} \leq 0$ (irreversible adhesion)
- $\omega > 0$ constant (coefficient of internal cohesion)
- \mathbf{P} $-\frac{1}{2}|\mathbf{u}|^2$ source of damage due to displacement.

Derivation of the model		
000000000000		

The unilateral contact

• The normal reaction on $\Gamma_{\rm c}$ has to ensure the impenetrability condition

 $u_N \leq 0$ on Γ_c

and to render the Signorini conditions.

Derivation of the model		
000000000000		

The unilateral contact

• The normal reaction on $\Gamma_{\rm c}$ has to ensure the impenetrability condition

$$u_N \leq 0$$
 on Γ_c

and to render the Signorini conditions.

It is given by

$$R_N \in -\frac{\partial \Psi_{\Gamma_c}}{\partial \mathbf{u}_N}$$

that is

$$R_N = \sigma_N \in -\chi u_N - \partial I_{]-\infty,0]}(u_N)$$

0

イロト イポト イヨト イヨト

úΝ

臣

$$\partial I_{(-\infty,0]}(\mathbf{u}_N) = \begin{cases} 0, & \text{if } \mathbf{u}_N < 0, \\ [0,+\infty), & \text{if } \mathbf{u}_N = 0. \end{cases}$$

Giovanna Bonfanti

The nonisothermal case

Future perspectives

Signorini conditions

$$\sigma_N \in -\chi u_N - \partial I_{]-\infty,0]}(u_N) \Leftrightarrow u_N \leq 0, \ \sigma_N + \chi u_N \leq 0, \ u_N(\sigma_N + \chi u_N) = 0$$

▲ロト▲御ト▲臣ト▲臣ト 臣 のQ@

Giovanna Bonfanti Modelling and analysis of surface damage problems

The nonisothermal case 00000

Signorini conditions

$$\sigma_N \in -\chi u_N - \partial I_{]-\infty,0]}(u_N) \Leftrightarrow u_N \leq 0, \ \sigma_N + \chi u_N \leq 0, \ u_N (\sigma_N + \chi u_N) = 0$$

• If $\chi = 0$ (no adhesion) then

$$u_N \leq 0, \ \sigma_N \leq 0, \ u_N \sigma_N = 0$$

(classical Signorini conditions)

Signorini conditions

$$\left| \sigma_N \in -\chi u_N - \partial I_{]-\infty,0]}(u_N) \right| \Leftrightarrow \left| u_N \leq 0, \ \sigma_N + \chi u_N \leq 0, \ u_N (\sigma_N + \chi u_N) = 0 \right|$$

• If $\chi = 0$ (no adhesion) then

$$u_N \leq 0, \ \sigma_N \leq 0, \ u_N \sigma_N = 0$$

(classical Signorini conditions)

• If the adhesion is **active** $\chi > 0$

$$\sigma_N \in -\chi u_N - \partial I_{]-\infty,0]}(u_N)$$

i.e., there is a reaction counteracting separation:

$$\sigma_N = -\chi u_N > 0$$
 if $u_N < 0$

▲日▼▲□▼▲目▼▲目▼ 回 ろくの

Giovanna Bonfanti

Derivation of the model			
000000000000	00000000000	00000	0000

The friction effects: the Coulomb law

The tangential component of the reaction on $\Gamma_{\rm c}$ is given by

$$\mathsf{R}_{\mathcal{T}} \in -rac{\partial \Phi_{\mathsf{\Gamma}_{\mathrm{c}}}}{\partial \dot{\mathsf{u}}_{\mathcal{T}}}$$

that is

$$\mathbf{R}_{T} = \sigma_{T} \in -\chi \mathbf{u}_{T} - \nu |\sigma_{N} + \chi u_{N}| \mathbf{d}(\dot{\mathbf{u}}_{T})$$

where

$$\mathbf{d}(\mathbf{v}_{\mathcal{T}}) = \begin{cases} \frac{\mathbf{v}_{\mathcal{T}}}{|\mathbf{v}_{\mathcal{T}}|} & \text{if } \mathbf{v}_{\mathcal{T}} \neq \mathbf{0} \\ \mathbf{z}_{\mathcal{T}} & |\mathbf{z}| \leq 1 & \text{if } \mathbf{v}_{\mathcal{T}} = \mathbf{0} \end{cases}$$

 \rightsquigarrow if $v_{\mathcal{T}}$ is scalar, then $d=\mathrm{Sign}:\mathbb{R}\rightrightarrows\mathbb{R}$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

3

• ν friction coefficient

$$\bullet \ \sigma_N + \chi u_N \in -\partial I_{(-\infty,0]}(u_N)$$

The nonisothermal case

Future perspectives 0000

The friction effects: the Coulomb law

The tangential component of the reaction on $\Gamma_{\rm c}$ is

$$\mathbf{R}_{T} = \sigma_{T} = -\chi \mathbf{u}_{T} - \nu |\underbrace{\sigma_{N} + \chi u_{N}}_{-\partial l_{(-\infty,0]}(u_{N})} | \mathbf{d}(\dot{\mathbf{u}}_{T})$$

where

$$\mathbf{d}(\mathbf{v}_{\mathcal{T}}) = \begin{cases} \frac{\mathbf{v}_{\mathcal{T}}}{|\mathbf{v}_{\mathcal{T}}|} & \text{if } \mathbf{v}_{\mathcal{T}} \neq \mathbf{0} \\ \mathbf{z}_{\mathcal{T}} & |\mathbf{z}| \leq 1 & \text{if } \mathbf{v}_{\mathcal{T}} = \mathbf{0} \end{cases}$$

 \rightsquigarrow if $v_{\mathcal{T}}$ is scalar, then $d=\mathrm{Sign}:\mathbb{R}\rightrightarrows\mathbb{R}$

- \blacktriangleright ν friction coefficient
- $\sigma_N + \chi u_N \in -\partial I_{(-\infty,0]}(u_N)$

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Giovanna Bonfanti

The nonisothermal case

The regularized (nonlocal) Coulomb law

The tangential component of the reaction needs to be regularized

$$\sigma_{T} \in -\chi \mathbf{u}_{T} - \nu | \mathcal{R}(\sigma_{N} + \chi u_{N}) | \mathbf{d}(\dot{\mathbf{u}}_{T})$$

where

$$\mathbf{d}(\mathbf{v}_{\mathcal{T}}) = \begin{cases} \frac{\mathbf{v}_{\mathcal{T}}}{|\mathbf{v}_{\mathcal{T}}|} & \text{if } \mathbf{v}_{\mathcal{T}} \neq \mathbf{0} \\ \mathbf{z}_{\mathcal{T}} & |\mathbf{z}| \leq 1 & \text{if } \mathbf{v}_{\mathcal{T}} = \mathbf{0} \end{cases}$$

R nonlocal smoothing operator (physically meaningful)

For friction problems without adhesion, use of \mathcal{R} first proposed in [Duvaut,'80]

The nonisothermal case

Future perspectives 0000

Nonlocal Coulomb law for unilateral contact

$$\sigma_{\mathcal{T}} \in -\chi \mathbf{u}_{\mathcal{T}} -
u | \mathcal{R}(\sigma_{\mathcal{N}} + \chi u_{\mathcal{N}}) | \mathbf{d}(\dot{\mathbf{u}}_{\mathcal{T}})$$

generalizes the nonlocal Coulomb law, accounting for adhesion

$$\begin{aligned} |\sigma_{T} + \chi \mathbf{u}_{T}| &\leq \nu |\mathcal{R}(\sigma_{N} + \chi u_{N})|, \\ |\sigma_{T} + \chi \mathbf{u}_{T}| &< \nu |\mathcal{R}(\sigma_{N} + \chi u_{N})| \Longrightarrow \dot{\mathbf{u}}_{T} = \mathbf{0}, \\ |\sigma_{T} + \chi \mathbf{u}_{T}| &= \nu |\mathcal{R}(\sigma_{N} + \chi u_{N})| \Longrightarrow \exists \lambda \geq 0: \quad \dot{\mathbf{u}}_{T} = -\lambda(\sigma_{T} + \chi \mathbf{u}_{T}) \end{aligned}$$

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 めんの

Giovanna Bonfanti

The PDE system	
•0000000000	

The Problem: variational formulation

• Bilinear forms of linear viscoelasticity

$$\left(\begin{array}{l} \mathbf{a}(\mathbf{u},\mathbf{v}) := \int_{\Omega} \mathbf{a}_{ijkh} \varepsilon_{kh}(\mathbf{u}) \varepsilon_{ij}(\mathbf{v}), \\ \mathbf{b}(\mathbf{u},\mathbf{v}) = \int_{\Omega} \mathbf{b}_{ijkh} \varepsilon_{kh}(\mathbf{u}) \varepsilon_{ij}(\mathbf{v}) \end{array} \right.$$

for $\boldsymbol{u},\,\boldsymbol{v}\in\boldsymbol{W}=\{\boldsymbol{v}\in(\mathcal{H}^1(\Omega))^3:\boldsymbol{v}=\boldsymbol{0}\text{ a.e. on }\Gamma_1\}.$

• The problem: Find (\mathbf{u}, χ, η) such that

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + a(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u} \cdot \mathbf{v} + \int_{\Gamma_{c}} \eta \mathbf{v} \cdot \mathbf{n} + \int_{\Gamma_{c}} \nu |\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \\ \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0,T) \\ \eta \in \partial I_{(-\infty,0]}(u_{N}) \text{ on } \Gamma_{c} \times (0,T) \end{split}$$

The PDE system	
•0000000000	

The Problem: variational formulation

• Bilinear forms of linear viscoelasticity

$$\left(\begin{array}{l} \mathbf{a}(\mathbf{u},\mathbf{v}) := \int_{\Omega} \mathbf{a}_{ijkh} \varepsilon_{kh}(\mathbf{u}) \varepsilon_{ij}(\mathbf{v}), \\ \mathbf{b}(\mathbf{u},\mathbf{v}) = \int_{\Omega} \mathbf{b}_{ijkh} \varepsilon_{kh}(\mathbf{u}) \varepsilon_{ij}(\mathbf{v}) \end{array} \right.$$

for $\boldsymbol{u},\,\boldsymbol{v}\in\boldsymbol{W}=\{\boldsymbol{v}\in(\mathcal{H}^1(\Omega))^3:\boldsymbol{v}=\boldsymbol{0}\text{ a.e. on }\Gamma_1\}.$

• The problem: Find (\mathbf{u}, χ, η) such that

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + a(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u} \cdot \mathbf{v} + \int_{\Gamma_{c}} \eta \mathbf{v} \cdot \mathbf{n} + \int_{\Gamma_{c}} \nu |\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \\ \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0,T) \\ \eta \in \partial I_{(-\infty,0]}(u_{N}) \text{ on } \Gamma_{c} \times (0,T) \end{split}$$

イロト イ部ト イヨト イヨト 二日

$$\begin{split} \dot{\chi} &- \Delta_s \chi + \partial I_{(-\infty,0]}(\dot{\chi}) + \partial I_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^2 \quad \text{on } \Gamma_c \times (0, T), \\ \partial_{\mathbf{n}_s} \chi &= 0 \quad \text{on } \partial \Gamma_c \times (0, T) \qquad + \textit{Cauchy} \quad \textit{conditions} \end{split}$$

Analytical difficulties

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + \mathbf{a}(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u}\mathbf{v} + \int_{\Gamma_{c}} \eta \mathbf{v} \cdot \mathbf{n} + \\ &+ \int_{\Gamma_{c}} \nu |\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0,T) \\ &\eta \in \partial I_{(-\infty,0]}(u_{N}) \quad \text{on } \Gamma_{c} \times (0,T) \\ &\dot{\chi} - \Delta_{s}\chi + \partial I_{(-\infty,0]}(\dot{\chi}) + \partial I_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^{2} \quad \text{on } \Gamma_{c} \times (0,T) \\ &\partial_{\mathbf{n}_{s}}\chi = 0 \quad \text{on } \partial \Gamma_{c} \times (0,T) \qquad + Cauchy \ conditions \end{split}$$

 \rightsquigarrow double multivalued constraint on χ and $\dot{\chi}$

 \Rightarrow **doubly nonlinear** character

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Analytical difficulties

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + a(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u}\mathbf{v} + \int_{\Gamma_{c}} \eta \mathbf{v} \cdot \mathbf{n} + \\ &+ \int_{\Gamma_{c}} \nu |\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0,T) \\ &\eta \in \partial l_{(-\infty,0]}(u_{N}) \quad \text{on } \Gamma_{c} \times (0,T) \\ &\dot{\chi} - \Delta_{s}\chi + \partial l_{(-\infty,0]}(\dot{\chi}) + \partial l_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^{2} \quad \text{on } \Gamma_{c} \times (0,T) \\ &\partial_{\mathbf{n}_{s}}\chi = 0 \quad \text{on } \partial \Gamma_{c} \times (0,T) \qquad + Cauchy \ conditions \end{split}$$

→ (quadratic) coupling terms on the boundary

 \Rightarrow (we need sufficient regularity for u and \dot{u} to control their traces)

Analytical difficulties

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + \mathbf{a}(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u}\mathbf{v} + \int_{\Gamma_{c}} \eta \mathbf{v} \cdot \mathbf{n} \\ + \int_{\Gamma_{c}} \nu |\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0,T) \\ \eta \in \partial l_{(-\infty,0]}(u_{N}) \quad \text{on } \Gamma_{c} \times (0,T) \\ \dot{\chi} - \Delta_{s}\chi + \partial l_{(-\infty,0]}(\dot{\chi}) + \partial l_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^{2} \quad \text{on } \Gamma_{c} \times (0,T) \\ \partial_{n_{s}}\chi = 0 \quad \text{on } \partial \Gamma_{c} \times (0,T) \qquad + Cauchy \ conditions \end{split}$$

 \rightarrow double multivalued constraint on u_N and \dot{u}_T on the boundary.

 \Rightarrow main difficulty!

A regularization of the boundary term $|\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_{T})$ is crucial!

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 回 ▶ ▲ 回 ▶

The nonisothermal case

Future perspectives 0000

臣

A global-in-time existence result

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + a(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u}\mathbf{v} + \int_{\Gamma_{c}} \eta \mathbf{v} \cdot \mathbf{n} + \\ &+ \int_{\Gamma_{c}} \nu |\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0,T) \\ &\eta \in \partial I_{(-\infty,0]}(u_{N}) \quad \text{on } \Gamma_{c} \times (0,T) \\ &\dot{\chi} - \Delta_{s}\chi + \partial I_{(-\infty,0]}(\dot{\chi}) + \partial I_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^{2} \quad \text{on } \Gamma_{c} \times (0,T), \\ &\partial_{n_{s}}\chi = 0 \quad \text{on } \partial \Gamma_{c} \times (0,T) \quad + \text{Cauchy conditions} \end{split}$$

There exists a solution (\mathbf{u}, χ, η)

$$\begin{aligned} \mathbf{u} &\in H^1(0, T; H^1(\Omega)) \\ \chi &\in W^{1,\infty}(0, T; L^2(\Gamma_c)) \cap H^1(0, T; H^1(\Gamma_c)) \cap L^\infty(0, T; H^2(\Gamma_c)) \\ \eta &\in L^2(0, T; H^{-1/2}(\Gamma_c)) \end{aligned}$$

Giovanna Bonfanti

Outline of the proof of existence

- Moreau-Yosida regularization of non-smooth operators
- Time discretization scheme (time-incremental minimization)
- Existence result for the discretized system
- Uniform estimates
- Passage to the limit
 - Identification of nonlinearities

Outline of the proof of existence

Moreau-Yosida regularization of non-smooth operators

- Time discretization scheme (time-incremental minimization)
- Existence result for the discretized system
- Uniform estimates
- Passage to the limit
 Identification of nonlinearities

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○ ○

Giovanna Bonfanti

Derivation of the model 0000000000000	The PDE system 00000000000	

Approximation: Moreau-Yosida regularization of the multivalued operators

 $\begin{cases} \frac{\partial I_{(-\infty,0]}(u_N)}{\partial I_{[0,1]}(\chi)} & \text{replaced by } (\partial I_{(-\infty,0]})_{\varepsilon}(u_N) & \text{-normal compliance} \\ \frac{\partial I_{[0,1]}(\chi)}{\partial I_{[0,1]}(\xi)} & \text{replaced by } (\partial I_{[0,1]})_{\varepsilon}(\chi) \end{cases}$

•
$$\eta \in \partial I_{(-\infty,0]}(u_N) \iff \eta_{\varepsilon} = (\partial I_{(-\infty,0]})_{\varepsilon}(u_N) = \frac{1}{\varepsilon}(u_N)_{+}$$

 $\eta \uparrow (\frac{1}{\varepsilon}(\cdot)_{+})_{\vee}$
• $\partial I_{[0,1]}(\chi) \iff (\partial I_{[0,1]})_{\varepsilon}(\chi)$
 $\eta \uparrow (\frac{1}{\varepsilon}(\cdot)_{+})_{\vee}$

Giovanna Bonfanti

The PDE system	
00000000000	

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Giovanna Bonfanti

The PDE system	
00000000000	

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + a(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u} \cdot \mathbf{v} + \int_{\Gamma_{c}} \eta_{\varepsilon} \mathbf{v} \cdot \mathbf{n} + + \int_{\Gamma_{c}} |\mathcal{R}(-\eta_{\varepsilon})| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \\ & \text{for all } \mathbf{v} \in W \quad \text{a.e. in } (0,T) \\ \eta_{\varepsilon} &= (\partial I_{(-\infty,0]})_{\varepsilon} (u_{N}) \quad \text{on } \Gamma_{c} \times (0,T) \\ \dot{\chi} - \Delta_{s} \chi + \partial I_{(-\infty,0]}(\dot{\chi}) + (\partial I_{[0,1]}(\chi))_{\varepsilon} \ni \omega - \frac{1}{2} |\mathbf{u}|^{2} \quad \text{on } \Gamma_{c} \times (0,T), \\ \partial_{n_{s}} \chi = 0 \quad \text{on } \partial \Gamma_{c} \times (0,T), \end{split}$$

The PDE system	
00000000000	

$$\begin{split} b(\dot{\mathbf{u}},\mathbf{v}) + a(\mathbf{u},\mathbf{v}) + \int_{\Gamma_{c}} \chi \mathbf{u} \cdot \mathbf{v} + \int_{\Gamma_{c}} \eta_{\varepsilon} \mathbf{v} \cdot \mathbf{n} + + \int_{\Gamma_{c}} |\mathcal{R}(-\eta_{\varepsilon})| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \mathbf{v}_{T} \ni \langle \mathbf{F}, \mathbf{v} \rangle \\ & \text{for all } \mathbf{v} \in W \quad \text{a.e. in } (0,T) \\ \eta_{\varepsilon} &= (\partial I_{(-\infty,0]})_{\varepsilon} (u_{N}) \quad \text{on } \Gamma_{c} \times (0,T) \\ \dot{\chi} - \Delta_{s} \chi + \partial I_{(-\infty,0]}(\dot{\chi}) + (\partial I_{[0,1]}(\chi))_{\varepsilon} \ni \omega - \frac{1}{2} |\mathbf{u}|^{2} \quad \text{on } \Gamma_{c} \times (0,T), \\ \partial_{n_{s}} \chi = 0 \quad \text{on } \partial \Gamma_{c} \times (0,T), \end{split}$$

イロト イヨト イヨト イヨト

3

Time discretization scheme (time-incremental minimization)

- Existence result for the discretized system
- Uniform estimates

The PDE system	
000000000000	

First a priori estimate

• Energy estimate:

•

$$\int_{0}^{t} b(\dot{\mathbf{u}}, \dot{\mathbf{u}}) + a(\mathbf{u}, \dot{\mathbf{u}}) + \int_{\Gamma_{c}} (\chi \mathbf{u} \cdot \dot{\mathbf{u}} + \eta \dot{\mathbf{u}}_{N} + |\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{T}) \cdot \dot{\mathbf{u}}_{T}) \ni \langle \mathbf{F}, \dot{\mathbf{u}} \rangle +$$

$$\int_{0}^{l} \int_{\Gamma_{c}} \dot{\chi} - \Delta_{s} \chi + \partial I_{(-\infty,0]}(\dot{\chi}) + \partial I_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^{2} \quad \times \quad \dot{\chi}$$

• Some terms cancel out and we get

$$\begin{split} |\mathbf{u}|_{H^1(0,T;W)} &\leq C \\ |\chi|_{H^1(0,T;L^2(\Gamma_c)) \cap L^\infty(0,T;H^1(\Gamma_c))} &\leq C \end{split}$$

In particular

$$|\mathbf{u}_{|_{\Gamma_{\mathrm{c}}}}|_{H^{1}(0,T;L^{4}(\Gamma_{\mathrm{c}}))} \leq C$$

Э

イロト イヨト イヨト イヨト

Giovanna Bonfanti

Second a priori estimate

• Formally

$$\int_0^t \int_{\Gamma_c} \dot{\chi} - \Delta_s \chi + \partial I_{(-\infty,0]}(\dot{\chi}) + \partial I_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^2 \quad \times \quad \partial_t (-\Delta \chi + \partial I_{[0,1]}(\chi))$$

- Monotonicity ${\sf arguments} + integration by parts in time + elliptic regularity (<math display="inline">\Omega$ suff. smooth) give

$$\begin{aligned} |\chi|_{H^1(0,\,T;H^1(\Gamma_c))\cap L^{\infty}(0,\,T;H^2(\Omega))} &\leq C\\ |\partial I_{[0,1]}(\chi)|_{L^{\infty}(0,\,T;L^2(\Gamma_c))} &\leq C \end{aligned}$$

& by comparison

$$\begin{aligned} |\partial I_{(-\infty,0]}(\dot{\chi})|_{L^{\infty}(0,\,\mathcal{T};L^{2}(\Gamma_{c}))} &\leq C \\ |\chi|_{W^{1,\infty}(0,\,\mathcal{T};L^{2}(\Gamma_{c}))} &\leq C \end{aligned}$$

▲ロト▲御ト▲臣ト▲臣ト 臣 めんの

The nonisothermal case 00000

Third a priori estimate

• By comparison in the first equation

$$|\partial I_{(-\infty,0]}(u_N)\mathbf{n} + |\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_{\mathcal{T}})|_{L^2(0,\mathcal{T};H^{-1/2}(\Gamma_c))} \leq C$$

Third a priori estimate

• By comparison in the first equation

$$|\partial I_{(-\infty,0]}(u_N)\mathbf{n} + |\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_{\mathcal{T}})|_{L^2(0,\mathcal{T};H^{-1/2}(\Gamma_c))} \leq C$$

 $|\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{\mathcal{T}}) \& \partial I_{(-\infty,0]}(u_N) \mathbf{n}$ are orthogonal, hence

$$\begin{cases} |\partial I_{(-\infty,0]}(u_N)\mathbf{n}|_{L^2(0,T;H^{-1/2}(\Gamma_c))} \leq C, \\ ||\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_T)|_{L^2(0,T;H^{-1/2}(\Gamma_c))} \leq C \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへで

Giovanna Bonfanti

Third a priori estimate

• By comparison in the first equation

$$|\partial I_{(-\infty,0]}(u_N)\mathbf{n} + |\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_{\mathcal{T}})|_{L^2(0,\mathcal{T};H^{-1/2}(\Gamma_c))} \leq C$$

 $|\mathcal{R}(-\eta)| \mathbf{d}(\dot{\mathbf{u}}_{\mathcal{T}}) \& \partial I_{(-\infty,0]}(u_N) \mathbf{n}$ are orthogonal, hence

$$\begin{cases} |\partial I_{(-\infty,0]}(u_N)\mathbf{n}|_{L^2(0,T;H^{-1/2}(\Gamma_c))} \leq C, \\ ||\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_T)|_{L^2(0,T;H^{-1/2}(\Gamma_c))} \leq C \end{cases}$$

• In addition (from its definition), $|d(\dot{u}_{\mathcal{T}})|_{L^{\infty}((0,\mathcal{T})\times\Gamma_{c})} \leq 1$

Passage to the limit

►

- by compactness and monotonicity-semicontinuity arguments
- identification of weak limits for maximal monotone operators
 - semicontinuity arguments and weak/strong convergence for $\partial I_{[0,1]}(\chi)$ and $\partial I_{(-\infty,0]}(\dot{\chi})$
 - ► Main difficulty: the terms

$$|\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_{T})$$
 & $\eta \in \partial I_{(-\infty,0]}(u_{N})$

simultaneously present in the first equation.

Identification of the nonlinearities

First step: identification of $\partial I_{(-\infty,0]}(u_N)$

 \rightsquigarrow by semicontinuity, passing to the limit weakly in the first equation

Second step: identification of $|\mathcal{R}(-\eta)|\mathbf{d}(\dot{\mathbf{u}}_{T})$

 \rightsquigarrow by compactifying character of ${\mathcal R}$

$$\begin{array}{l} \mathcal{R}: L^{2}(0,T;H^{-1/2}(\Gamma_{c})) \rightarrow L^{2}(0,T;L^{2}(\Gamma_{c})) \\ \hline \text{ for all } \eta_{\varepsilon}, \eta \in L^{2}(0,T;H^{-1/2}(\Gamma_{c})) \\ \eta_{\varepsilon} \rightharpoonup \eta \text{ weakly in } L^{2}(0,T;H^{-1/2}(\Gamma_{c})) \\ \Rightarrow \mathcal{R}(\eta_{\varepsilon}) \rightarrow \mathcal{R}(\eta) \text{ strongly in } L^{2}(0,T;L^{2}(\Gamma_{c})) \end{array}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The nonisothermal case

The nonisothermal case

To take into account thermal effects:

- **•** in the **bulk domain** Ω :
 - ► <u>ε(u)</u>
 - θ (volume absolute temperature)
- on the contact surface Γ_c :
 - × <u>χ</u>
 - $\theta_{\rm s}$ (surface absolute temperature)

・ロト・日本・日本・日本・日本・日本

Giovanna Bonfanti

The nonisothermal case •0000

The nonisothermal case

To take into account thermal effects:

- **•** in the **bulk domain** Ω :
 - ► ε(u)
 - θ (volume absolute temperature)
- on the **contact surface** Γ_c :

$$\begin{array}{c} \chi \\ \hline \theta_{s} \text{ (surface absolute temperature)} \end{array}$$

• friction *coefficient* depends on the thermal gap $(\theta_{|r_c} - \theta_s)$

$$\blacktriangleright \qquad \qquad \nu \rightsquigarrow \nu(\theta_{|_{\Gamma_c}} - \theta_s)$$

• contributions due to friction as source of heat on Γ_c (heat generated by friction).

The nonisothermal case

Future perspectives

The equations for θ and θ_{s}

Entropy balance equations (rescaled energy balance, under **small perturbation assumption**)

on the bulk domain:

- $\begin{cases} \partial_t s + \operatorname{div} \mathbf{Q} = h & \text{in } \Omega \times (0, T), \\ \begin{cases} \mathbf{Q} \cdot \mathbf{n} = \mathbf{F} & \text{in } \Gamma_c \times (0, T), \\ \mathbf{Q} \cdot \mathbf{n} = 0 & \text{in } \partial\Omega \setminus \Gamma_c \times (0, T), \end{cases} \end{cases}$
- on the contact surface:
 - $\begin{cases} \partial_t s_s + \operatorname{div}_s \mathbf{Q}_s = \mathbf{F} & \text{in } \Gamma_c \times (0, T), \\ \mathbf{Q}_s \cdot \mathbf{n}_s = 0 & \text{on } \partial \Gamma_c \times (0, T), \end{cases}$

- $\begin{cases} s \text{ volume entropy} \\ \mathbf{Q} \text{ volume entropy flux} \\ F \text{ entropy exchanged through } \Gamma_c \\ h \text{ external source} \end{cases}$
- $\begin{cases} s_s \text{ surface entropy} \\ \mathbf{Q}_s \text{ surface entropy flux} \\ F \text{ entropy exchanged through } \Gamma_c \end{cases}$

<ロ> (四) (四) (三) (三) (三) (三)

Entropy balance: see [Bonetti-Colli-Fabrizio-Gilardi '08], also [Bonetti-Colli-Frémond '03, Bonetti-B-Rossi '09.]

Derivation of the model 0000000000000	The PDE system 00000000000	The nonisothermal case 00●00	

$$\partial_t (\log \theta) - \operatorname{div} \dot{\mathbf{u}} - \Delta \theta = h \quad \text{on } \Omega \times (0, T),$$

$$\partial_n \theta = \begin{cases} 0 & \text{on } \partial \Omega \setminus \Gamma_c \times (0, T), \\ -\chi(\theta - \theta_s) - \nu'(\theta - \theta_s) |\mathcal{R}(-\partial I_{J-\infty,0]}(u_N))| |\dot{\mathbf{u}}_T| \text{ on } \Gamma_c \times (0, T), \end{cases}$$

Derivation of the model	The PDE system	The nonisothermal case	
0000000000000	00000000000	00●00	

$$\partial_t (\log \theta) - \operatorname{div} \dot{\mathbf{u}} - \Delta \theta = h \quad \text{on } \Omega \times (0, T),$$

$$\partial_n \theta = \begin{cases} 0 & \text{on } \partial\Omega \setminus \Gamma_c \times (0, T), \\ -\chi(\theta - \theta_s) - \nu'(\theta - \theta_s) |\mathcal{R}(-\partial I_{j-\infty,0}(u_N))| |\dot{\mathbf{u}}_T| \text{ on } \Gamma_c \times (0, T), \end{cases}$$

Entropy equation for θ_s on the contact surface

$$\begin{split} \partial_t (\log \theta_s) &- \lambda'(\chi) \dot{\chi} - \Delta_s \theta_s = \\ &= \chi(\theta - \theta_s) + \nu'(\theta - \theta_s) |\mathcal{R}(-\partial h_{]-\infty,0]}(u_N)) || \dot{\mathbf{u}}_T| \quad \text{ in } \Gamma_c \times (0,T) \\ \partial_n \theta_s &= 0 \quad \text{ on } \partial \Gamma_c \times (0,T) \,. \end{split}$$

Derivation of the model	The PDE system	The nonisothermal case	
0000000000000	00000000000	00●00	

$$\partial_t (\log \theta) - \operatorname{div} \dot{\mathbf{u}} - \Delta \theta = h \quad \text{on } \Omega \times (0, T),$$

$$\partial_n \theta = \begin{cases} 0 & \text{on } \partial \Omega \setminus \Gamma_c \times (0, T), \\ -\chi(\theta - \theta_s) - \nu'(\theta - \theta_s) |\mathcal{R}(-\partial l_{]-\infty,0]}(u_N))||\dot{\mathbf{u}}_{T}| \text{ on } \Gamma_c \times (0, T), \end{cases}$$

Entropy equation for θ_s on the contact surface

$$\begin{split} \partial_t (\log \theta_s) &- \lambda'(\chi) \dot{\chi} - \Delta_s \theta_s = \\ &= \chi(\theta - \theta_s) + \nu'(\theta - \theta_s) |\mathcal{R}(-\partial I_{]-\infty,0]}(u_N)) || \dot{\mathbf{u}}_T| \quad \text{ in } \Gamma_c \times (0,T) \\ \partial_n \theta_s &= 0 \quad \text{ on } \partial \Gamma_c \times (0,T) \,. \end{split}$$

we deduce directly θ , $\theta_s > 0$, crucial for thermodynamical consistency

Derivation of the model	The PDE system	The nonisothermal case	
0000000000000	00000000000	00●00	

$$\partial_t (\log \theta) - \operatorname{div} \dot{\mathbf{u}} - \Delta \theta = h \quad \text{on } \Omega \times (0, T),$$

$$\partial_n \theta = \begin{cases} 0 & \text{on } \partial\Omega \setminus \Gamma_c \times (0, T), \\ -\chi(\theta - \theta_s) - \nu'(\theta - \theta_s) |\mathcal{R}(-\partial I_{j-\infty,0}(u_N))| |\dot{\mathbf{u}}_T| \text{ on } \Gamma_c \times (0, T), \end{cases}$$

Entropy equation for θ_s on the contact surface

$$\begin{split} \partial_t (\log \theta_s) &- \lambda'(\chi) \dot{\chi} - \Delta_s \theta_s = \\ &= \chi(\theta - \theta_s) + \nu'(\theta - \theta_s) |\mathcal{R}(-\partial I_{]-\infty,0]}(u_N)) || \dot{\mathbf{u}}_T| \quad \text{ in } \Gamma_c \times (0,T) \\ \partial_n \theta_s &= 0 \quad \text{ on } \partial \Gamma_c \times (0,T) \,. \end{split}$$

• we deduce directly θ , $\theta_s > 0$, crucial for thermodynamical consistency • singular character of the θ , θ_s -equations (θ -equation is coupled with a third type boundary condition).

The full system

$$\begin{aligned} &-\operatorname{div}\left(\mathcal{K}\varepsilon(\mathbf{u})+\mathcal{K}_{v}\varepsilon(\dot{\mathbf{u}})+\theta\mathbf{1}\right)=\mathbf{f}\quad \operatorname{in}\,\Omega\times(0,T),\\ &\mathbf{u}=\mathbf{0}\quad \operatorname{on}\,\Gamma_{1}\times(0,T),\quad \left(\mathcal{K}\varepsilon(\mathbf{u})+\mathcal{K}_{v}\varepsilon(\dot{\mathbf{u}})+\theta\mathbf{1}\right)\mathbf{n}=\mathbf{g}\quad \operatorname{on}\,\Gamma_{2}\times(0,T),\\ &\left(\mathcal{K}\varepsilon(\mathbf{u})+\mathcal{K}_{v}\varepsilon(\dot{\mathbf{u}})+\theta\mathbf{1}\right)\mathbf{n}+\chi\mathbf{u}+\partial l_{]-\infty,0]}(u_{N})\mathbf{n}+\nu(\theta-\theta_{s})|\mathcal{R}(-\partial l_{]-\infty,0]}(u_{N}))|\mathbf{d}(\dot{\mathbf{u}}_{T})\ni\mathbf{0}\right)\\ &\dot{\chi}-\Delta_{s}\chi+\partial l_{[0,1]}(\chi)\ni\omega-\lambda'(\chi)(\theta_{s})-\frac{1}{2}|\mathbf{u}|^{2}\quad \operatorname{in}\,\Gamma_{c}\times(0,T),\\ &\partial_{n}\chi=0\quad \operatorname{on}\,\partial\Gamma_{c}\times(0,T)\\ &\partial_{t}(\log\theta)-\operatorname{div}\,\mathbf{u}_{t}-\Delta\theta=h\quad \operatorname{in}\,\Omega\times(0,T),\\ &\partial_{n}\theta=\begin{cases} 0\quad \operatorname{on}\,\partial\Omega\setminus\Gamma_{c}\times(0,T),\\ &-\chi(\theta-\theta_{s})-\nu'(\theta-\theta_{s})|\mathcal{R}(-\partial l_{]-\infty,0]}(u_{N}))||\dot{\mathbf{u}}_{T}|\quad \operatorname{on}\,\Gamma_{c}\times(0,T),\\ &\partial_{t}(\log\theta_{s})-\lambda'(\chi)\chi_{t}-\Delta_{s}\theta_{s}=\chi(\theta-\theta_{s})+\nu'(\theta-\theta_{s})|\mathcal{R}(-\partial l_{]-\infty,0]}(u_{N}))||\dot{\mathbf{u}}_{T}|\quad \operatorname{in}\,\Gamma_{c}\times(0,T),\\ &\partial_{n}\theta_{s}=0\quad \operatorname{on}\,\partial\Gamma_{c}\times(0,T) \end{cases}$$

Giovanna Bonfanti

♠ Main difficulty: boundary coupling terms (thermal & frictional effects)

Derivation of the model	The PDE system	The nonisothermal case	Future perspectives
000000000000	000000000000000000000000000000000000000	00000	0000
$-\operatorname{div}(K\varepsilon(\mathbf{u})+K_{v}\varepsilon(\dot{\mathbf{u}})+ heta$	$1) = \mathbf{f} \text{in } \Omega \times (0, T),$		
$\mathbf{u} = 0$ on $\Gamma_1 \times (0, T)$, (P	$\kappa \varepsilon(\mathbf{u}) + \kappa_v \varepsilon(\dot{\mathbf{u}}) + \theta 1)\mathbf{n} = 0$	g on $\Gamma_2 \times (0, T)$,	
$(\kappa \varepsilon(\mathbf{u}) + \kappa_{\nu} \varepsilon(\dot{\mathbf{u}}) + \theta 1)\mathbf{n} + c$	$\chi \mathbf{u} + \partial I_{]-\infty,0]}(u_N)\mathbf{n} + \mathbf{\nu}(\mathbf{u})$	$(heta - heta_s) \mathcal{R}(-\partial I_{]-\infty,0]}(u_N)) \mathbf{d}(\dot{\mathbf{u}}) $	<i>τ</i>) ∋ 0
$\dot{\chi} - \Delta_s \chi + \partial I_{[0,1]}(\chi) \ni \omega -$	$\lambda'(\chi)(heta_s) - rac{1}{2} {f u} ^2$ in ${f \Gamma}_{ m c}$	\times (0, T),	
$\partial_n \chi = 0$ on $\partial \Gamma_{\rm c} \times (0, T)$			
$\partial_t (\log \theta) - \operatorname{div} \mathbf{u}_t - \Delta \theta = h$	in $\Omega \times (0, T)$,		
$\partial_n heta = egin{cases} 0 & ext{on } \partial \Omega \setminus \Pi \ -\chi(heta - heta_s) - \end{pmatrix}$	$\Gamma_{c} \times (0, T),$ $\nu'(\theta - \theta_{s}) \mathcal{R}(-\partial h_{-\infty,0}) $	$(u_N)) \dot{\mathbf{u}}_T $ on $\Gamma_{\mathrm{c}} imes (0, T)$,	
$\partial_t (\log \theta_s) - \lambda'(\chi) \chi_t - \Delta_s \theta_s$	$\chi = \chi(heta - heta_s) + \overline{ u'(heta - heta_s)}$	$ \mathcal{R}(-\partial I_{]-\infty,0]}(u_N)) \dot{\mathbf{u}}_T $ in	$\Gamma_{\rm c} \times (0, T),$
$\partial_n \theta_s = 0 \text{on } \partial \Gamma_c \times (0, T)$			

♦ Main difficulty: boundary coupling terms (thermal & frictional effects) ⇒ we need (...in addition...) sufficient regularity on θ and u to control their traces → suitable assumpt. on R and ν + careful estimates → Existence result for the full system

Giovanna Bonfanti

The nonisothermal case

Future perspectives •000

An alternative approach: from volume to surface damage

→→ from volume damage to adhesive contact via dimensional reduction

 \rightarrow to recover the behaviour on **the interface** *S* as limit of a thin medium which links the body and the support (or two bodies) and which is ruled by its own evolution law

from volume damage to adhesive contact via asymptotic expansions method [Bonetti, B., Lebon, Rizzoni '17, Bonetti, B., Lebon '18]

from volume damage to delamination/adhesive contact via variational techniques [Freddi, Paroni, Roubiček, Zanini '11, Mielke, Roubiček, Thomas '12]

Outlook to the stochastic framework

To take into account

- unknown distribution of cracks and defects in the material
- fluctuations/phase changes at the microscopic level

↓ stochastic models of damage

Derivation of the model Th	he PDE system	The nonisothermal case	Future perspectives
			0000

Outlook to the stochastic framework

$$\begin{split} b(\partial_t \mathbf{u}, \mathbf{v}) + a(\mathbf{u}, \mathbf{v}) + \int_{\Gamma_c} \chi \mathbf{u} \cdot \mathbf{v} + \int_{\Gamma_c} \eta \mathbf{v} \cdot \mathbf{n} = \langle \mathbf{F}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0, T) \\ \eta \in \partial I_{(-\infty, 0]}(u_N) \quad \text{on } \Gamma_c \times (0, T) \end{split}$$

$$\begin{split} \partial_t \chi - \Delta_s \chi + \partial I_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^2 & \text{ on } \Gamma_c \times (0, T), \\ \partial_{\mathbf{n}_s} \chi = 0 & \text{ on } \partial \Gamma_c \times (0, T) \\ & + \textit{Cauchy conditions} \end{split}$$

Derivation of the model Th	he PDE system	The nonisothermal case	Future perspectives
			0000

Outlook to the stochastic framework

$$\begin{split} b(\partial_t \mathbf{u}, \mathbf{v}) + a(\mathbf{u}, \mathbf{v}) + \int_{\Gamma_c} \chi \mathbf{u} \cdot \mathbf{v} + \int_{\Gamma_c} \eta \mathbf{v} \cdot \mathbf{n} = \langle \mathbf{F}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in \mathbf{W} \text{ a.e. in } (0, T) \\ \eta \in \partial I_{(-\infty, 0]}(u_N) \quad \text{on } \Gamma_c \times (0, T) \end{split}$$

$$\begin{split} \partial_t \chi - \Delta_s \chi + \partial I_{[0,1]}(\chi) \ni \omega - \frac{1}{2} |\mathbf{u}|^2 & \text{ on } \Gamma_c \times (0, T), \\ \partial_{\mathbf{n}_s} \chi = 0 & \text{ on } \partial \Gamma_c \times (0, T) \\ & + \textit{Cauchy conditions} \end{split}$$

Giovanna Bonfanti

	Future perspective
	0000

A stochastic model of damage [Bauzet, Bonetti, B., Lebon, Vallet, '17]

Stochastic Allen-Cahn equation with constraint

$$\begin{cases} \partial_t \left(\chi - \int_0^t h(\chi) dW \right) - \Delta \chi + \partial I_{[0,1]}(\chi) \quad \ni \quad w_s(\chi) + f \quad \text{in } \Omega \times D \times (0, T), \\ \partial_n \chi &= 0 \qquad \text{in } \Omega \times \partial D \times (0, T), \\ \chi(\omega, x, t = 0) &= \chi_0(x) \qquad \omega \in \Omega, x \in D. \end{cases}$$

- ▶ $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space, $D \subset \mathbb{R}^d$, $d \ge 1$
- χ the damage parameter, $0 \leqslant \chi \leqslant 1$
- ▶ $w_s : \mathbb{R} \to [0, +\infty[$ a Lipschitz-continuous function
- $f: \Omega \times D \times (0, T) \rightarrow \mathbb{R}$ a stochastic process
- ▶ $h : \mathbb{R} \to \mathbb{R}$ a Lipschitz-continuous function
- $W = (W_t)_{0 \le t \le T}$ a one dimensional Brownian motion defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

• $\chi_0: D \to \mathbb{R}$ the initial condition

	Future perspective
	0000

A stochastic model of damage [Bauzet, Bonetti, B., Lebon, Vallet, '17]

Stochastic Allen-Cahn equation with constraint

$$\begin{cases} \partial_t \left(\chi - \int_0^t h(\chi) dW \right) - \Delta \chi + \partial I_{[0,1]}(\chi) \quad \ni \quad w_s(\chi) + f \quad \text{in } \Omega \times D \times (0,T), \\ \partial_n \chi \quad = \quad 0 \qquad \qquad \text{in } \Omega \times \partial D \times (0,T), \\ \chi(\omega, x, t = 0) \quad = \quad \chi_0(x) \qquad \omega \in \Omega, x \in D. \end{cases}$$

- Moreau-Yosida regularization of ∂I_[0,1](·)
- Existence and uniqueness for the time discretized system
- Uniforme estimates/passage to the limit procedure

~> Existence and uniqueness result