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Contact problems with adhesion

Applications to

I machine designing and manufacturing (use of adhesive materials in
automotive and aerospace industry...)

I use of layered composite structures in building and civil engineering

• the interface regions between laminates affect the strength and stability of
the structural elements
• the degradation of the adhesive substance on such regions may lead to
material failure

�

surface damage models

[Frémond, ’80s–’90s & “Non-smooth thermomechanics” 2002]

 energy and dissipation concentrated on the contact surface
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The model

We consider
a thermoviscoelastic body Ω ⊂ R3 which is in

contact with adhesion

with a rigid support on a (flat) prescribed part Γc of its boundary

∂Ω = Γ1 ∪ Γ2 ∪ Γc

• assigned displacement on Γ1

• assigned traction on Γ2

Giovanna Bonfanti

Modelling and analysis of surface damage problems


































.




 gene

J r



Derivation of the model The PDE system The nonisothermal case Future perspectives

Giovanna Bonfanti

Modelling and analysis of surface damage problems

 

gÌ



Derivation of the model The PDE system The nonisothermal case Future perspectives

we study its evolution taking into account
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I viscoelastic behavior in the bulk domain (under small deformations
assumption)

I the unilateral contact (Signorini conditions)

I the adhesion (∼ glue) between the body and the support

I frictional effects (Coulomb law)

I thermal effects: in the bulk domain and on the contact surface
(for the moment, neglected)
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Related literature

(on static, quasistatic, dynamic contact problems with or without friction,
with or without adhesion/delamination, mainly in the isothermal case):

I .........

I Ballard, Cocou, Jean, Lebon, Léger, Point, Pratt, Raous

I Andersson, Andrews, Klarbring, Kuttler, Shillor, Wright, Sofonea, Telega

I Martins, Monteiro Marques, Oden

I Migórski, Mantic, Kruzič, Panagiotopoulos

I Bock, Eck, Jarušek, Krbec, Schatzman

I Kočvara, Mielke, Roubiček, Thomas

I .........
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The model: the variables

♣ In the isothermal case

I in the bulk domain Ω:

ε(u) symm. linearized strain tensor

(u small displacement)

I on the contact surface Γc:

χ (scalar) adhesion parameter

“phase parameter” ∼ proportion of active bonds between body & support
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The equations for u and χ

♣ Equations for u and χ are recovered from the principle of virtual powers

♣ The energy balance of the system also includes micro-forces and
micro-motions, according to M. Frémond’s approach

I momentum balance:
− div σ = f in Ω× (0,T ),
σn = R in Γc × (0,T ),

u = 0 in Γ1 × (0,T ),

σn = g in Γ2 × (0,T ),

σ stress tensor

R reaction on the contact surface

f volume force, g traction

I balance equation for microscopic motions:{
B − divs H = a in Γc × (0,T ),

H · ns = 0 on ∂Γc × (0,T ),

{
B, H microscopic internal forces

a microscopic external source
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Energy and dissipation functionals

Constitutive laws for σ, R,B,H are given in terms of volume & surface free
energies

ΨΩ = ΨΩ(ε(u)), ΨΓc = ΨΓc(u|Γc , χ,∇χ)

and the volume & surface potentials of dissipation

ΦΩ = ΦΩ(ε(u̇)), ΦΓc = ΦΓc(χ̇, u̇|Γc )

I energy and dissipation potentials enforce physical constraints on the
variables to ensure consistency: they hold +∞, for non-admissible values.
 non-smooth (multivalued) operators in the equations

• [Raous, Cangémi, Cocou, ’99] for a model close to the present one;
• [Del Piero, Raous, ’10] for general models coupling friction, adhesion and
unilateral contact.
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The adhesion phenomenon

Notation for the normal and tangential components of displacement vector u and
stress vector σn

u = uNn + uT , uN = uini , σn = σNn + σT , σN = σijninj

with n = (ni ) outward normal unit vector to ∂Ω.

• The “surface damage parameter” χ ∼ fraction of active glue fibers at
each point of the contact surface

I χ = 0 no adhesion (completely broken bonds)

I χ = 1 complete adhesion (unbroken bonds)

I 0 < χ < 1 partial adhesion

We have to enforce
χ ∈ [0, 1]
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The adhesion phenomenon

We impose the constraint χ ∈ [0, 1] by the term I[0,1](χ) in the surface energy

functional

ΨΓc =
1

2
χ|u|2 + I(−∞,0](uN) + ω(1− χ) +

1

2
|∇sχ|2 + I[0,1](χ)

⇒ ∂I[0,1](χ) in eq. for χ

∂I[0,1](χ) =


(−∞, 0], if χ = 0,

0, if 0 < χ < 1,

[0,+∞), if χ = 1.

0 1

χ

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

The adhesion phenomenon

• If the “damage” of the glue is irreversible, we enforce χ̇ ≤ 0 by the term

I(−∞,0](χ̇) in the surface dissipation potential

ΦΓc =
1

2
|χ̇|2 + I(−∞,0](χ̇)

⇒ ∂I(−∞,0](χ̇) in eq. for χ

∂I(−∞,0](χ̇) =

0, if χ̇ < 0,

[0,+∞), if χ̇ = 0. 0

χ̇
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The PDE system: the evolution of the adhesion

The evolution of the adhesion on the contact surface is ruled by

χ̇−∆sχ+ ∂I[0,1](χ) + ∂I]−∞,0](χ̇) 3 ω − 1

2
|u|2 on Γc × (0,T )

∂nsχ = 0, on ∂Γc × (0,T )

I ∂I[0,1](χ)⇒ χ ∈ [0, 1] (physical consistency)

I ∂I]−∞,0](χ̇)⇒ χ̇ ≤ 0 (irreversible adhesion)

I ω > 0 constant (coefficient of internal cohesion)

I − 1
2
|u|2 source of damage due to displacement.
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The unilateral contact

• The normal reaction on Γc has to ensure the impenetrability condition

uN ≤ 0 on Γc

and to render the Signorini conditions.

It is given by

RN ∈ −
∂ΨΓc

∂uN

that is
RN = σN ∈ −χuN − ∂I]−∞,0](uN)

∂I(−∞,0](uN) =

0, if uN < 0,

[0,+∞), if uN = 0. 0

uN
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Signorini conditions

σN ∈ −χuN − ∂I]−∞,0](uN) ⇔ uN ≤ 0, σN + χuN ≤ 0, uN (σN + χuN) = 0

• If χ = 0 (no adhesion) then uN ≤ 0, σN ≤ 0, uN σN = 0

(classical Signorini conditions)

• If the adhesion is active χ > 0

σN ∈ −χuN − ∂I]−∞,0](uN)

i.e., there is a reaction counteracting separation:

σN = −χuN > 0 if uN < 0

Giovanna Bonfanti
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The friction effects: the Coulomb law

The tangential component of the reaction on Γc is given by

RT ∈ −
∂ΦΓc

∂u̇T

that is RT = σT ∈ −χuT − ν|σN + χuN |d(u̇T )

where

d(vT ) =


vT

|vT |
if vT 6= 0

zT |z| ≤ 1 if vT = 0

 if vT is scalar, then d = Sign : R⇒ R 0

u̇T

I ν friction coefficient

I σN + χuN ∈ −∂I(−∞,0](uN)
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The regularized (nonlocal) Coulomb law

The tangential component of the reaction needs to be regularized

σT ∈ −χuT − ν|R(σN + χuN)|d(u̇T )

where

I

d(vT ) =


vT

|vT |
if vT 6= 0

zT |z| ≤ 1 if vT = 0

I R nonlocal smoothing operator (physically meaningful)

For friction problems without adhesion, use of R first proposed in [Duvaut,’80]

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

Nonlocal Coulomb law for unilateral contact

σT ∈ −χuT − ν|R(σN + χuN)|d(u̇T )

generalizes the nonlocal Coulomb law, accounting for adhesion

|σT + χuT | ≤ ν|R(σN + χuN)|,
|σT + χuT | < ν|R(σN + χuN)| =⇒ u̇T = 0,

|σT + χuT | = ν|R(σN + χuN)| =⇒ ∃λ ≥ 0 : u̇T = −λ(σT + χuT )
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The Problem: variational formulation
• Bilinear forms of linear viscoelasticity{

a(u, v) :=
∫

Ω aijkhεkh(u)εij (v),
b(u, v) =

∫
Ω bijkhεkh(u)εij (v)

for u, v ∈W = {v ∈ (H1(Ω))3 : v = 0 a.e. on Γ1}.

• The problem: Find (u, χ, η) such that

b(u̇, v) + a(u, v) +

∫
Γc

χu · v +

∫
Γc

ηv · n +

∫
Γc

ν|R(−η)|d(u̇T ) · vT 3 〈F, v〉

∀v ∈W a.e. in (0,T )

η ∈ ∂I(−∞,0](uN) on Γc × (0,T )

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + ∂I[0,1](χ) 3 ω − 1

2
|u|2 on Γc × (0,T ),

∂nsχ = 0 on ∂Γc × (0,T ) + Cauchy conditions
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Analytical difficulties

b(u̇, v) + a(u, v) +

∫
Γc

χuv +

∫
Γc

ηv · n+

+

∫
Γc

ν|R(−η)|d(u̇T ) · vT 3 〈F, v〉 ∀v ∈W a.e. in (0,T )

η ∈ ∂I(−∞,0](uN) on Γc × (0,T )

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + ∂I[0,1](χ) 3 ω − 1

2
|u|2 on Γc × (0,T )

∂nsχ = 0 on ∂Γc × (0,T ) + Cauchy conditions

 double multivalued constraint on χ and χ̇

⇒ doubly nonlinear character

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

Analytical difficulties

b(u̇, v) + a(u, v) +

∫
Γc

χuv +

∫
Γc

ηv · n+

+

∫
Γc

ν|R(−η)|d(u̇T ) · vT 3 〈F, v〉 ∀v ∈W a.e. in (0,T )

η ∈ ∂I(−∞,0](uN) on Γc × (0,T )

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + ∂I[0,1](χ) 3 ω − 1

2
|u|2 on Γc × (0,T )

∂nsχ = 0 on ∂Γc × (0,T ) + Cauchy conditions

 (quadratic) coupling terms on the boundary

⇒ (we need sufficient regularity for u and u̇ to control their traces)
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Analytical difficulties

b(u̇, v) + a(u, v) +

∫
Γc

χuv +

∫
Γc

ηv · n

+

∫
Γc

ν|R(−η)|d(u̇T ) · vT 3 〈F, v〉 ∀v ∈W a.e. in (0,T )

η ∈ ∂I(−∞,0](uN) on Γc × (0,T )

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + ∂I[0,1](χ) 3 ω − 1

2
|u|2 on Γc × (0,T )

∂nsχ = 0 on ∂Γc × (0,T ) + Cauchy conditions

 double multivalued constraint on uN and u̇T on the boundary.

⇒ main difficulty!

A regularization of the boundary term |R(−η)|d(u̇T ) is crucial!
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A global-in-time existence result

b(u̇, v) + a(u, v) +

∫
Γc

χuv +

∫
Γc

ηv · n+

+

∫
Γc

ν|R(−η)|d(u̇T ) · vT 3 〈F, v〉 ∀v ∈W a.e. in (0,T )

η ∈ ∂I(−∞,0](uN) on Γc × (0,T )

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + ∂I[0,1](χ) 3 ω −
1

2
|u|2 on Γc × (0,T ),

∂nsχ = 0 on ∂Γc × (0,T ) + Cauchy conditions

There exists a solution (u, χ, η)

u ∈ H1(0,T ;H1(Ω))

χ ∈W 1,∞(0,T ; L2(Γc)) ∩ H1(0,T ;H1(Γc)) ∩ L∞(0,T ;H2(Γc))

η ∈ L2(0,T ;H−1/2(Γc))
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Outline of the proof of existence

I Moreau-Yosida regularization of non-smooth operators

I Time discretization scheme (time-incremental minimization)

I Existence result for the discretized system

I Uniform estimates

I Passage to the limit
I Identification of nonlinearities
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The approximate problem

Approximation: Moreau-Yosida regularization of the multivalued operators{
∂I(−∞,0](uN) replaced by (∂I(−∞,0])ε(uN) � normal compliance
∂I[0,1](χ) replaced by (∂I[0,1])ε(χ)

• η ∈ ∂I(−∞,0](uN)! ηε = (∂I(−∞,0])ε(uN) =
1

ε
(uN)+

η

uN

1
ε

(·)+

• ∂I[0,1](χ)! (∂I[0,1])ε(χ)
0 1

χ
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The approximate problem

b(u̇, v) + a(u, v) +

∫
Γc

χu · v +

∫
Γc

ηv · n+ +

∫
Γc

|R(−η)|d(u̇T ) · vT 3 〈F, v〉

for all v ∈W a.e. in (0,T )

η ∈ ∂I(−∞,0](uN) on Γc × (0,T )

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + ∂I[0,1](χ) 3 ω − 1

2
|u|2 on Γc × (0,T ),

∂nsχ = 0 on ∂Γc × (0,T ),
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The approximate problem

b(u̇, v) + a(u, v) +

∫
Γc

χu · v +

∫
Γc

ηεv · n+ +

∫
Γc

|R(−ηε)|d(u̇T ) · vT 3 〈F, v〉

for all v ∈W a.e. in (0,T )

ηε = (∂I(−∞,0])ε(uN) on Γc × (0,T )

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + (∂I[0,1](χ))ε 3 ω −
1

2
|u|2 on Γc × (0,T ),

∂nsχ = 0 on ∂Γc × (0,T ),
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First a priori estimate

• Energy estimate:∫ t

0

b(u̇, u̇) + a(u, u̇) +

∫
Γc

(χu·u̇ + ηu̇N + |R(−η)|d(u̇T ) · u̇T ) 3 〈F, u̇〉

+∫ t

0

∫
Γc

χ̇−∆sχ+ ∂I(−∞,0](χ̇) + ∂I[0,1](χ) 3 ω − 1

2
|u|2 × χ̇

• Some terms cancel out and we get

|u|H1(0,T ;W ) ≤ C

|χ|H1(0,T ;L2(Γc))∩L∞(0,T ;H1(Γc)) ≤ C

In particular
|u|Γc |H1(0,T ;L4(Γc)) ≤ C
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Second a priori estimate

• Formally∫ t

0

∫
Γc

χ̇−∆sχ+∂I(−∞,0](χ̇)+∂I[0,1](χ) 3 ω−1

2
|u|2 × ∂t(−∆χ+ ∂I[0,1](χ))

• Monotonicity arguments + integration by parts in time + elliptic
regularity (Ω suff. smooth) give

|χ|H1(0,T ;H1(Γc))∩L∞(0,T ;H2(Ω)) ≤ C

|∂I[0,1](χ)|L∞(0,T ;L2(Γc)) ≤ C

& by comparison

|∂I(−∞,0](χ̇)|L∞(0,T ;L2(Γc)) ≤ C

|χ|W 1,∞(0,T ;L2(Γc)) ≤ C
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Third a priori estimate

• By comparison in the first equation

|∂I(−∞,0](uN)n + |R(−η)|d(u̇T )|L2(0,T ;H−1/2(Γc)) ≤ C

|R(−η)|d(u̇T ) & ∂I(−∞,0](uN)n are orthogonal, hence{
|∂I(−∞,0](uN)n|L2(0,T ;H−1/2(Γc)) ≤ C ,

||R(−η)|d(u̇T )|L2(0,T ;H−1/2(Γc)) ≤ C

• In addition (from its definition),
|d(u̇T )|L∞((0,T )×Γc) ≤ 1
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Passage to the limit

• by compactness and monotonicity-semicontinuity arguments

• identification of weak limits for maximal monotone operators

I semicontinuity arguments and weak/strong convergence for ∂I[0,1](χ) and
∂I(−∞,0](χ̇)

I ....

I Main difficulty: the terms

|R(−η)|d(u̇T ) & η ∈ ∂I(−∞,0](uN)

simultaneously present in the first equation.
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Identification of the nonlinearities

I First step: identification of ∂I(−∞,0](uN)

 by semicontinuity, passing to the limit weakly in the first equation

I Second step: identification of |R(−η)|d(u̇T )

 by compactifying character of R

I R : L2(0,T ;H−1/2(Γc))→ L2(0,T ; L2(Γc))
I for all ηε, η ∈ L2(0,T ;H−1/2(Γc))

ηε ⇀ η weakly in L2(0,T ;H−1/2(Γc))

⇒ R(ηε)→R(η) strongly in L2(0,T ; L2(Γc))
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The nonisothermal case

To take into account thermal effects:

I in the bulk domain Ω:
I ε(u)

I θ (volume absolute temperature)

I on the contact surface Γc:
I χ

I θs (surface absolute temperature)

• friction coefficient depends on the thermal gap (θ|Γc − θs)

I ν  ν(θ|Γc − θs)
I contributions due to friction as source of heat on Γc (heat generated

by friction).

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

The nonisothermal case

To take into account thermal effects:

I in the bulk domain Ω:
I ε(u)

I θ (volume absolute temperature)

I on the contact surface Γc:
I χ

I θs (surface absolute temperature)

• friction coefficient depends on the thermal gap (θ|Γc − θs)

I ν  ν(θ|Γc − θs)
I contributions due to friction as source of heat on Γc (heat generated

by friction).

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

The equations for θ and θs

Entropy balance equations (rescaled energy balance, under small
perturbation assumption)

I on the bulk domain:
∂ts + div Q = h in Ω× (0,T ),{

Q · n = F in Γc × (0,T ),

Q · n = 0 in ∂Ω \ Γc × (0,T ),


s volume entropy

Q volume entropy flux

F entropy exchanged through Γc

h external source

I on the contact surface:{
∂tss + divsQs = F in Γc × (0,T ),

Qs · ns = 0 on ∂Γc × (0,T ),

ss surface entropy

Qs surface entropy flux

F entropy exchanged through Γc

♠ Entropy balance: see [Bonetti-Colli-Fabrizio-Gilardi ’08], also
[Bonetti-Colli-Frémond ’03, Bonetti-B-Rossi ’09.]
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Entropy equation for θ on the bulk domain

∂t(log θ)− div u̇−∆θ = h on Ω× (0,T ),

∂nθ =

{
0 on ∂Ω \ Γc × (0,T ),

−χ(θ − θs)−ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | on Γc × (0,T ),

Entropy equation for θs on the contact surface

∂t(log θs)− λ′(χ)χ̇−∆sθs =

= χ(θ − θs)+ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | in Γc × (0,T )

∂nθs = 0 on ∂Γc × (0,T ) .

♣ we deduce directly θ, θs > 0, crucial for thermodynamical consistency

♠ singular character of the θ, θs -equations (θ-equation is coupled with a third type

boundary condition).

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

Entropy equation for θ on the bulk domain

∂t(log θ)− div u̇−∆θ = h on Ω× (0,T ),

∂nθ =

{
0 on ∂Ω \ Γc × (0,T ),

−χ(θ − θs)−ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | on Γc × (0,T ),

Entropy equation for θs on the contact surface

∂t(log θs)− λ′(χ)χ̇−∆sθs =

= χ(θ − θs)+ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | in Γc × (0,T )

∂nθs = 0 on ∂Γc × (0,T ) .

♣ we deduce directly θ, θs > 0, crucial for thermodynamical consistency

♠ singular character of the θ, θs -equations (θ-equation is coupled with a third type

boundary condition).

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

Entropy equation for θ on the bulk domain

∂t(log θ)− div u̇−∆θ = h on Ω× (0,T ),

∂nθ =

{
0 on ∂Ω \ Γc × (0,T ),

−χ(θ − θs)−ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | on Γc × (0,T ),

Entropy equation for θs on the contact surface

∂t(log θs)− λ′(χ)χ̇−∆sθs =

= χ(θ − θs)+ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | in Γc × (0,T )

∂nθs = 0 on ∂Γc × (0,T ) .

♣ we deduce directly θ, θs > 0, crucial for thermodynamical consistency

♠ singular character of the θ, θs -equations (θ-equation is coupled with a third type

boundary condition).

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

Entropy equation for θ on the bulk domain

∂t(log θ)− div u̇−∆θ = h on Ω× (0,T ),

∂nθ =

{
0 on ∂Ω \ Γc × (0,T ),

−χ(θ − θs)−ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | on Γc × (0,T ),

Entropy equation for θs on the contact surface

∂t(log θs)− λ′(χ)χ̇−∆sθs =

= χ(θ − θs)+ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | in Γc × (0,T )

∂nθs = 0 on ∂Γc × (0,T ) .

♣ we deduce directly θ, θs > 0, crucial for thermodynamical consistency

♠ singular character of the θ, θs -equations (θ-equation is coupled with a third type

boundary condition).

Giovanna Bonfanti

Modelling and analysis of surface damage problems



Derivation of the model The PDE system The nonisothermal case Future perspectives

The full system

− div (Kε(u) + Kvε(u̇) + θ1) = f in Ω× (0,T ),

u = 0 on Γ1 × (0,T ), (Kε(u) + Kvε(u̇) + θ1)n = g on Γ2 × (0,T ),

(Kε(u) + Kvε(u̇) + θ1)n + χu + ∂I]−∞,0](uN)n + ν(θ−θs)|R(−∂I]−∞,0](uN))|d(u̇T ) 3 0

χ̇−∆sχ+ ∂I[0,1](χ) 3 ω − λ′(χ)(θs)−
1

2
|u|2 in Γc × (0,T ),

∂nχ = 0 on ∂Γc × (0,T )

∂t(log θ)− div ut −∆θ = h in Ω× (0,T ),

∂nθ =

{
0 on ∂Ω \ Γc × (0,T ),

−χ(θ − θs)− ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | on Γc × (0,T ),

∂t(log θs)− λ′(χ)χt −∆sθs = χ(θ − θs) + ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | in Γc × (0,T ),

∂nθs = 0 on ∂Γc × (0,T ) + Cauchy conditions
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− div (Kε(u) + Kvε(u̇) + θ1) = f in Ω× (0,T ),
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χ̇−∆sχ+ ∂I[0,1](χ) 3 ω − λ′(χ)(θs)−
1

2
|u|2 in Γc × (0,T ),

∂nχ = 0 on ∂Γc × (0,T )

∂t(log θ)− div ut −∆θ = h in Ω× (0,T ),

∂nθ =

0 on ∂Ω \ Γc × (0,T ),

−χ(θ − θs)− ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | on Γc × (0,T ),

∂t(log θs)− λ′(χ)χt −∆sθs = χ(θ − θs) + ν′(θ−θs)|R(−∂I]−∞,0](uN))||u̇T | in Γc × (0,T ),

∂nθs = 0 on ∂Γc × (0,T )

♠ Main difficulty: boundary coupling terms (thermal & frictional effects)

⇒ we need (...in addition...) sufficient regularity on θ and u̇ to control their traces 
suitable assumpt. on R and ν + careful estimates  Existence result for the full

system
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An alternative approach: from volume to surface damage

Giovanna Bonfanti
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 from volume damage to adhesive contact via dimensional reduction
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 to recover the behaviour on the interface S as limit of a thin medium which links
the body and the support (or two bodies) and which is ruled by its own evolution law

I from volume damage to adhesive contact via asymptotic expansions method
[Bonetti, B., Lebon, Rizzoni ’17, Bonetti, B., Lebon ’18]

I from volume damage to delamination/adhesive contact via variational techniques
[Freddi, Paroni, Roubiček, Zanini ’11, Mielke, Roubiček, Thomas ’12]



Derivation of the model The PDE system The nonisothermal case Future perspectives

Outlook to the stochastic framework

To take into account

I unknown distribution of cracks and defects in the material

I fluctuations/phase changes at the microscopic level

�

stochastic models of damage
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Outlook to the stochastic framework

b(∂tu, v) + a(u, v) +

∫
Γc

χu · v +

∫
Γc

ηv · n = 〈F, v〉 ∀v ∈W a.e. in (0,T )

η ∈ ∂I(−∞,0](uN) on Γc × (0,T )

∂tχ−∆sχ+ ∂I[0,1](χ) 3 ω − 1

2
|u|2 on Γc × (0,T ),

∂nsχ = 0 on ∂Γc × (0,T )

+ Cauchy conditions
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A stochastic model of damage [Bauzet, Bonetti, B., Lebon, Vallet, ’17]

Stochastic Allen-Cahn equation with constraint


∂t
(
χ−

∫ t

0
h(χ)dW

)
−∆χ+ ∂I[0,1](χ) 3 ws(χ) + f in Ω× D × (0,T ),

∂nχ = 0 in Ω× ∂D × (0,T ),

χ(ω, x , t = 0) = χ0(x) ω ∈ Ω, x ∈ D.

I (Ω,F ,P) a probability space, D ⊂ Rd , d > 1

I χ the damage parameter, 0 6 χ 6 1

I ws : R→ [0,+∞[ a Lipschitz-continuous function

I f : Ω× D × (0,T )→ R a stochastic process

I h : R→ R a Lipschitz-continuous function

I W = (Wt)06t6T a one dimensional Brownian motion defined on (Ω,F ,P).

I χ0 : D → R the initial condition
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A stochastic model of damage [Bauzet, Bonetti, B., Lebon, Vallet, ’17]

Stochastic Allen-Cahn equation with constraint


∂t
(
χ−

∫ t

0
h(χ)dW

)
−∆χ+ ∂I[0,1](χ) 3 ws(χ) + f in Ω× D × (0,T ),

∂nχ = 0 in Ω× ∂D × (0,T ),

χ(ω, x , t = 0) = χ0(x) ω ∈ Ω, x ∈ D.

I Moreau-Yosida regularization of ∂I[0,1](·)
I Existence and uniqueness for the time discretized system

I Uniforme estimates/passage to the limit procedure

 Existence and uniqueness result
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