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▶ Motivations

Fluids which properties, as viscosity, change (significantly) under various
stimuli: shear rate, electric field, magnetic field

▶ Mathematical goal

The existence and properties of solutions to nonlinear PDE arising from
dynamics of fluids of nonstandard rheology and abstract problems, where
the nonlinear term of the highest order is:

▶ monotone
▶ growth and coercivity conditions are given with help of general
convex functions
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Nonlinear PDEs

∂tϱ+ divx(ϱu) = 0 in I × Ω

∂t(ϱu) + divx(ϱu ⊗ u)− divxSSS(x , ϱ,DDDu) +∇xp = ϱf in I × Ω

divxu = 0 in I × Ω,

u(0, x) = u0 in Ω,

ϱ(0, x) = ϱ0 in Ω,

u(t, x) = 0 on I × ∂Ω

where Ω ⊂ Rd is an open and bounded domain, Q := I × Ω,

ϱ : Q → R - denotes density
u : Q → Rd - velocity field
p : Q → R - pressure function
f : Q → Rd - given outer forces
SSS : Ω× R+ × Rd×d → Rd×d - stress tensor
DDDu = 1

2 (∇u +∇Tu)
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Non-Newtonian fluids – classical growth condition – power-law

∂tu − divx SSS(x ,DDDu) + · · · = f

▶ standard growth and coercivity conditions

▶
|SSS(x ,DDDu)| ¬ c1|DDDu|p−1

▶
SSS(x ,DDDu) : DDDu ­ c2|DDDu|p

▶ p = 2 newtonian fluids

▶ p > 2 shear thickening, p < 2 shear thinning

▶ Lebesgue and Sobolev spaces

▶ J. Nečas, J. Málek, M. Buĺıček, J. Frehse, L. Diening, J. Wolf, M.
Růžička, M. Fuchs, P. Kaplický, Beiro de Veiga, and ...
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Generalizations

Let us take instead of M(ξ) = |ξ|p a more general function: convex, continuous
and of super-linear growth

▶ rapidly or slowly growing

exp(|ξ|)− 1, |ξ| ln(|ξ|+ 1)

▶ anizotropic, i.e. M : Rd → R+

1
p1
|ξ1|p1 +

1
p2
|ξ2|p2 + · · ·+

1
pd
|ξd |pd

▶ non-homogenous in space, i.e. with dependence on x M : Ω× Rd → R+,

|ξ|p(x)

▶ Orlicz spaces, anisotropic Orlicz spaces, Musielak-Orlicz spaces
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General growth and coercivity condition

Our general growth and coercivity conditions:

SSS(x ,DDDu) : DDDu ­ d1{M(x , d2DDDu) +M∗(x , d3SSS(x ,DDDu))}

Are equivalent to :

M(x , c1DDDu) ¬ SSS(x ,DDDu) : DDDu
c2M

∗(x , c3SSS(x ,DDDu)) ¬ M(x , c4DDDu)
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N-function and conjugate

M(x , ξ) : Ω× Rd → R+ is called an N–function

1. M is Carathéodory, convex, nonnegative

2. M(x , ξ) = M(x ,−ξ)
3. M(x , ξ) = 0 iff ξ = 0

4. there exist two Young functions m1, m2 : [0,∞)→ [0,∞) such that

m1(|ξ|) ¬ M(x , ξ) ¬ m2(|ξ|) for a.a. x ∈ Ω

m : [0,∞)→ [0,∞) is Young function if m(s) = 0 iff s = 0, m is convex and
super-linear at zero and infinity, i.e.

lim
s→0+

m(s)

s
= 0 and lim

s→∞

m(s)

s
=∞

A complementary function M∗ to M is defined by:

M∗(x , ζζζ) = sup
ξξξ∈Rd

(ξξξ : ζζζ −M(x , ξξξ)) .

M∗ is also an N–function



N-function and conjugate

M(x , ξ) : Ω× Rd → R+ is called an N–function
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Anisotropic Musielak-Orlicz spaces

Musielak-Orlicz class LM(Q;Rd)∫
Q

M(x , fff(t, x)) dxdt <∞

Musielak-Orlicz space LM(Q;Rd)∫
Q

M(x , λfff(t, x)) dxdt → 0 asλ→ 0

It is a Banach space w.r.t. the Luxemburg norm

∥ξξξ∥M = inf

{
λ > 0 |

∫
Q

M

(
x ,
ξξξ(t, x)

λ

)
dxdt ¬ 1

}
.

EM(Q;Rd) is a closure of simple functions on Q in LM(Q;Rd)

▶ EM ⊆ LM ⊆ LM

▶ (EM)∗ = LM∗
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Anisotropic Musielak-Orlicz spaces

We say that the N–function M satisfies ∆2–condition, if

M(x , 2ξξξ) ¬ CMM(x , ξξξ) + gM(x)

for all ξξξ ∈ Rd and some integrable nonnegative function gM

If M does NOT satisfy ∆2–condition then:

▶ LM is not separable

▶ C∞ is not dense in LM

▶ LM is not reflexive

▶ EM ⊊ LM ⊊ LM

Some other problems:

▶ LM(Q) ̸= LM(0,T ; LM(Ω))

▶ singular operators may be not continuous from LM to LM

▶ smooth functions may not be dense in a modular topology if M depends
on x
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Assumptions on the nonlinear term

We assume that the term SSS satisfies:

(S1) SSS(x ,DDDu) is a Carathéodory function

(S2) Coercivity/growth condtion

SSS(x , ξξξ) : ξξξ ­ c{M(x , ξξξ) +M∗(x ,SSS(x , ξξξ))}

(S3) SSS is monotonicity - for all ξξξ,ηηη ∈ Rd×d
sym and a.a. x ∈ Ω

(SSS(x , ξξξ)− SSS(x , ηηη)) : (ξξξ − ηηη) ­ 0

(S4) Additional assumptions on an N−function M depends on the particular
problem
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Results - non-Newtonian fluids: existence of weak solutions.

Shear thickening fluids

∂tϱ+ divx(ϱu) = 0 in Q

∂t(ϱu) + divx(ϱu ⊗ u)− divxSSS(x ,DDDu) +∇xp = ϱf in Q

divxu = 0 in Q,

u(t, x) = 0 on I × ∂Ω

1. the flow of a non-homogeneous non-Newtonian incompressible fluid with
a nonstandard rheology: SSS = SSS(x , ϱ,DDDu) and

M(x , ξξξ) ­ |ξξξ|p, p ­ 11
5

u ∈ Lp(0,T ;W 1,p
0,div), DDDu ∈ LM(Q), SSS ∈ LM∗(Q)

A.WK. DCDS, 2013
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Results - non-Newtonian fluids: existence of weak solutions.

Shear thickening fluids

∂tϱ+ divx(ϱu) = 0 in Q

∂t(ϱu) + divx(ϱu ⊗ u)− divxSSS+∇xp = ϱf
∂t(ϱθ) + divx(ϱθu)− divxq = SSS : DDDu

divxu = 0

q · n = 0, u(t, x) = 0 on I × ∂Ω

θ : Q → R - temperature,
SSS = SSS(x , ϱ, θ,DDDu)
q = q(ϱ, θ,∇xθ) : R2+ × R3 → R3 - heat flux

3. the flow of a non-homogeneous non-Newtonian
heat-conducting incompressible fluids - M(x , ξξξ) ­ |ξξξ|p, p ­ 115 ,
q has a linear growth w.r.t. ∇θ.

A.WK. B. Matejczyk. Nonlinearity 2018.



Main steps in the proof. The beginning is quite standard (non-Newtonian fluids) ...

▶ Constructing a family of approximate solutions

▶ Uniform bounds

▶ Theory of renormalized solutions for a transport equation (Lions, DiPerna)

▶ Compensated compactness methods, Curl-Div Lemma (Tartar, Feireisl)

▶ For the convective term: as p ­ 115 , u
n converges strongly in L2

▶ ...
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Nonlinear term

The main difficulty we have to face in the proof of sequential stability of
approximate solutions is

▶ convergence in the nonlinear term

∂tun − divx SSS(x ,DDDun) + · · · = f

▶ From energy estimates we obtain

DDDun ∗⇀ DDDu in LM and SSS(x ,DDDun)
∗
⇀χχχ in LM∗

▶ The main question:

Is χχχ = SSS(x ,DDDu)?
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Monotonicity method to show that χχχ = SSS(x ,DDDu)

▶
(SSS(x ,www)− SSS(x ,DDDun)) : (www −DDDun) ­ 0

▶
DDDun ∗⇀ DDDu in LM and SSS(x ,DDDun)

∗
⇀χχχ in LM∗

▶ Since DDDun ∈ LM and LM ̸= EM , www = DDDu + hv ∈ LM is not a proper test
function

▶ Monotonicity methods and Browder-Minty trick adapted to non-reflexive
Orlicz spaces:

www = DDDu1l{|DDDu|<j} + hv1l{|DDDu|<i}, v ∈ L∞

(Mustonen, Tienari (1999))
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Integration by parts

▶ How to obtain

lim sup
n→∞

∫
SSS(x ,DDDun) : DDDun ¬

∫
χχχ : DDDu ?

▶ Is a solution an admissible test function?

∂tun − divx SSS(x ,DDDun) + · · · = f

▶ How to obtain the integration by parts formula?

Classical case: t0, t1 ∈ (0,T ), u ∈ Lp(0,T ;X ), ut ∈ Lp′(0,T ;X ∗), X
reflexive and separable Banach space and X ⊂ H = H∗ ⊂ X ∗, then∫ t1

t0

⟨ut , u⟩X ,X∗dt =
1
2
∥u(t1)∥2H −

1
2
∥u(t0)∥2H

▶ Lack of density of smooth functions in LM and
LM(0,T ; LM(Ω)) ̸= LM((0,T )× Ω)
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Some problems – admissible test function, integration by parts formula

▶ How to obtain integration by parts formula?

▶ ∫ s

s0

∫
Ω

u · ∂t(ϕj) =

∫ T

0

∫
Ω

χχχ ·DDDϕj −
∫ T

0

∫
Ω

f · ϕj + . . . .

▶ If M∗ satisfies ∆2–condition, then χχχ ∈ LM∗ = EM∗ and we pass to the
limit using weak∗ convergence,
i.e. DDDϕj ∗⇀ DDDu in LM

▶ If M∗ does not satisfy ∆2, we can use a modular convergence

▶ z j converges to z in modular in LM if there exists λ > 0, such that∫
Q

M(x , (z j − z)/λ)dxdt → 0

▶ The closure of smooth functions w.r.t. weak∗ and modular topology of
symmetric gradients needs to coincide.
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▶ The closure of smooth functions w.r.t. weak∗ and modular topology of
symmetric gradients needs to coincide.



Some problems – Korn inequality

▶ Is the Korn inequality satisfied?

∥∇u∥LM ¬ c∥DDDu∥LM

▶ Fuchs: ∆2 for M and M∗ is needed

▶ Strauss:
∥u∥

L
d

d−1 (Ω)
¬ cd∥DDDu∥L1(Ω)

▶ If M is isotropic and homogenous

∥M(|u|)∥
L

d
d−1 (Ω)

¬ cd∥M(cΩ|DDDu|)∥L1(Ω)
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Topologies in Musielak-Orlicz spaces

▶ strong – norm topology
∥z j − z∥LM → 0

▶ modular topology
z j converges to z in modular in LM if there exists λ > 0, such that∫

Q

M(x , (z j − z)/λ)dxdt → 0

▶ weak-*
σ(LM ,EM∗)
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Thank you!


